This is the first study based on a planned and intensive sampling effort that describes the community composition and structure of the ground-dwelling arthropod assemblage of Península Valdés (Patagonia). It was carried out using pitfall traps, opened for two weeks during the summers of 2005, 2006 and 2007. A total of 28, 111 individuals were caught. Ants (Hymenoptera: Formicidae) dominated this community, followed by beetles (Coleoptera) and spiders (Araneae). The most abundant species were Pheidole bergi Mayr (Hymenoptera: Formicidae) and Blapstinus punctulatus Solier (Coleoptera: Tenebrionidae). Two new species were very recently described as new based on specimens collected during this study: Valdesiana curiosa Carpintero, Dellapé & Cheli (Hemiptera, Miridae) and Anomaloptera patagonica Dellapé & Cheli (Hemiptera, Oxycarenidae). The order Coleoptera was the most diverse taxa. The distribution of abundance data was best described by the logarithmic series model both at the family and species levels, suggesting that ecological relationships in this community could be controlled by a few factors. The community was dominated by predators from a trophic perspective. This suggests that predation acts as an important factor driving the distribution and abundances of surface-dwelling arthropods in this habitat and as such serves as a key element in understanding desert, above-ground community structure. These findings may also be useful for management and conservation purposes in arid Patagonia.
Climate Change is the most important threat to our society and all species on Earth. Large alterations in the climate are affecting every aspect of our society and in order to limit this impact we must decarbonize the economy before 2050. Although science presents solid evidence on the magnitude of the problem and outlines precisely the consequences, people do not act accordingly and do not consider this issue a priority for their survival. The reason behind this paradox might be a non-appropriate Social Representation of Climate Change in society as the Social Representation conditions and forms the response of the society. In this paper, we extend previous investigations of how this Social Representation is formed in order to find ways to improve it through a Massive Online Open Course on the Science of Climate Change. Using a validated questionnaire, we investigated the knowledge dimension of the Social Representation of Climate Change in a group of students of a MOOC on Climate Change. A pre- and posttest revealed general improvements in all the categories that were considered in this study. A detailed analysis showed different degrees of improvement for different groups, providing new insights in the efficiency of knowledge-based online courses. Well designed Massive Online Open Courses, based on scientific evidence, targeted to the general public might improve the Social Representation of Climate Change, which may in turn trigger awareness and an effective mobilization to address this important and urgent topic.
Knowing the spatial variation of insect and arachnid assemblages and their relationship with habitat variables is critical to understand the structure and dynamics of these communities in arid environments. The aim of this paper was to analyze the variation in ground-dwelling arthropod assemblages across three representative vegetation units of the Área Natural Protegida Península Valdés (Patagonia, Argentina). We asked whether environmental differences among representative vegetation units were associated to distinct arthropod assemblages. We selected three plant communities: grass, dwarf-shrub, and shrub steppes, and established three sampling sites within each of them. We measured variables of vegetation structure and soil characteristics and collected the arthropods using 10 pitfall traps per site. We analyzed the structure of arthropod assemblages at both family and ant species taxonomic levels. Each plant community displayed a distinctive assemblage, with differences in diversity, taxa abundance, trophic structure and functional groups of ants. Vegetation variables explained a higher proportion of the variation in the structure of the ground-dwelling arthropod assemblages than the soil variables. This work highlights the importance of the different vegetation units for the conservation of ground-dwelling arthropod biodiversity in Península Valdés.
With the aim to explore the diversity of aquatic fungi in Mexico we present an investigation using a fragment of the 18S ribosomal DNA as a molecular marker obtained from different water bodies (marine, brackish and fresh water). Ribosomal gene fragments were obtained by DNA amplification, the resulting sequences were compared using multiple alignments against a collection of classified reference fungal sequences and then subjected to phylogenetic clustering allowing the identification and classification of DNA sequences from environmental isolates as fungal down to the family level, provided enough reference sequence were available. From our ensemble of 2,020 sequences identified as fungal, 23.8% were classified at the family level, 48.5% at the order level, 13% at the class/subphylum level and 14.7% of the sequences (all from the same site) could not be unambiguously positioned in any of our reference fungal groups but were closely related to uncultivated marine fungi. The most frequently recovered phylum was Ascomycota (89.1%), followed by Chytridiomycota (8.1%), Basidiomycota (2.8%) and Mucoromycotina (1.3%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.