Although fire-induced soil water repellency (SWR) and its effects on soil hydrology and geomorphology have been studied in detail, very few studies have considered the effect of rock fragments resting on the soil surface or partly embedded in soil. In this research, we have studied the effect of rock fragments on the strength and spatial distribution of fire-induced SWR at different fire severities. A fireaffected area was selected for this experiment and classified into different zones according to fire severity (unburned, low, moderate and high) and rock fragment cover (low, <20% and high, >60%). During 7 days after fire, SWR and infiltration rates were assessed in the soil surface covered by individual rock fragments and in the midpoint between two adjacent rock fragments (with maximum spacing of 20 cm). SWR increased with fire severity. Rock fragments resting on the soil surface increased the heterogeneity of the spatial distribution of fire-induced SWR. SWR increased significantly with rock fragment cover in bare areas under moderate and high fire severity, but quantitatively important changes were only observed under high fire severity. In areas with a low rock fragment cover, water repellency from soil surfaces covered by rock fragments increased relative to bare soil surfaces, with increasing SWR. In areas with a high rock fragment cover, SWR increased significantly from non-covered to covered soil surfaces only after low-severity burning. Rock fragment cover did not affect infiltration rates, although it decreased significantly in soil surfaces after high-severity burning in areas under low and high rock fragment cover.
Forest-fire rates have increased in Southern European landscapes. These fires damage forest ecosystems and alter their development. During the last few decades, an increase in fast-growing and highly fuel-bearing plant species such as bush, Eucalyptus globulus Labill., and Pinus pinaster Ait. has been observable in the interior of Portugal. This study aims to verify this assumption by the quantification of the biomass carbon sink in the forests of the Mação municipality. Maps of fire severity and forest biomass evolution after a wildfire event were produced for the period of 1991 to 2019. To quantify carbon retention in this region, this evolution was correlated with gross primary production (GPP) on the basis of satellite imagery from Landsat 5, Landsat 8, and MODIS MYD17A2H. Results show that wildfires in Mação increased in area and severity with each passing decade due to the large accumulation of biomass promoted by the abandonment of rural areas. Before the large fires of 2003, 2017, and 2019, carbon rates reached a daily maximum of 5.4, 5.3, and 4.7 gC/m2/day, respectively, showing a trend of forest-biomass accumulation in the Mação municipality.
There has been increasing pressure on water resources in cities due to the proliferation of urban green areas. In the Mediterranean climate, only a small part of the plants’ water needs is supplied by rainfall during the winter months. Thus, in Algarve (Portugal) irrigation of the urban landscapes is required almost all year round. The aims of this study were to evaluate the maintenance of the urban landscapes of São Brás de Alportel (Algarve) during a year, based on the characterization of the vegetation of the urban gardens, the climate data, the analysis of the irrigation systems, the calculation of the plants water requirements and the normalized difference vegetation index (NDVI). By crossing all this information, it was possible to understand if the current maintenance level is the most suitable for sustainable irrigated urban landscapes. In most of the gardens, it was possible to establish a relationship between the gross irrigation water requirements and NDVI. In general, the NDVI allowed us to study the urban landscape, through the monthly observation of the differences in the appearance and development of the vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.