In this paper, we give upper bounds for the rate-distortion function (RDF) of any Gaussian vector, and we propose coding strategies to achieve such bounds. We use these strategies to reduce the computational complexity of coding Gaussian asymptotically wide sense stationary (AWSS) autoregressive (AR) sources. Furthermore, we also give sufficient conditions for AR processes to be AWSS.
In the era of the Internet of Things, there are many applications where numerous devices are deployed to acquire information and send it to analyse the data and make informed decisions. In these applications, the power consumption and price of the devices are often an issue. In this work, analog coding schemes are considered, so that an ADC is not needed, allowing the size and power consumption of the devices to be reduced. In addition, linear and DFT-based transmission schemes are proposed, so that the complexity of the operations involved is lowered, thus reducing the requirements in terms of processing capacity and the price of the hardware. The proposed schemes are proved to be asymptotically optimal among the linear ones for WSS, MA, AR and ARMA sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.