The present work aims at using a turbulence closure scheme to model suspended sediment transport processes in freesurface flows through vegetation and at evaluating the influence of different flow, sediment, and plant properties on the capacity of these systems to transport sediment as suspended load. Dimensional AnalysisThe investigation of sediment transport processes in vegetated channels involves the consideration of such a large set of variables characterizing the sediment, flow and plants properties, that the problem might seem in principle almost intractable. Dimensional analysis constitutes a valuable tool in such situations. Any variable X characterizing sediment transport processes in vegetated waterways may be expressed as a func-2341
Laboratory observations regarding the limit conditions for particle entrainment into suspension are presented. A high‐speed video system was used to investigate conditions for the entrainment of sediment particles and glass beads lying over a smooth boundary as well as over a rough bed. The results extend experimental conditions of previous studies towards finer particle sizes. A criterion for the limit of entrainment into suspension is proposed which is a function of the ratio between the flow shear velocity and particle settling velocity. Observations indicate that particles totally immersed within the viscous sublayer can be entrained into suspension by the flow, which contradicts the conclusions of previous researchers. A theoretical analysis of the entrainment process within the viscous sublayer, based on force–balance considerations, is used to show that this phenomenon is related to turbulent flow events of high instantaneous values of the Reynolds stress, in agreement with previous observations. In the case of experiments with a rough bed, a hiding effect was observed, which tends to preclude the entrainment of particles finer than the roughness elements. This implies that, as the ratio between particle and roughness element sizes becomes smaller, progressively higher bed shear stresses are required to entrain particles into suspension. On the other hand, an overexposure effect was also observed, which indicates that a particle moving on a smooth bed is more prone to be entrained than the same particle moving on a bed formed by identical particles.
[1] This paper describes a laboratory study of the dynamics of flow associated with three different stages of bed form amalgamation across the ripple-dune transition. Measurements of flow velocity were obtained over simplified fixed bed forms, designed to simulate conditions at the ripple:dune transition, using a 2D laser Doppler anemometer. This yielded information detailing the mean velocity field, turbulence statistics, local turbulence production, local deviations from the mean pressure caused by dynamic effects, turbulent kinetic energy and the contributions to the total Reynolds stresses from different coherent turbulent events. The results broadly confirm previous hypotheses that as bed form amalgamation proceeds across the ripple-dune transition, a superimposed bedstate can induce a series of critical changes to the flow structure, with higher Reynolds stresses being produced near and downstream of flow reattachment. In particular, quadrant 4 events (turbulent flow structures with a downstream velocity greater than average, and directed towards the bed) dominate the vertical turbulent diffusion of longitudinal momentum in near-bed regions close to the crest of the next downstream ripple, thus providing the potential for increased erosion and sediment transport. These experiments using simple fixed beds also provide support for recent measurements that document increased suspended sediment concentrations across the ripple-dune transition Robert, 2004, 2005), and that at the transition the largest bed forms are not necessarily those associated with the most intense shear layer activity (Schindler and Robert, 2005). Bed form superimposition and amalgamation may thus significantly alter the mean and turbulent flow field as compared to bed forms without superimposition.Citation: Fernandez, R., J. Best, and F. López (2006), Mean flow, turbulence structure, and bed form superimposition across the ripple-dune transition, Water Resour. Res., 42, W05406,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.