The coconut husk (Cocos nucifera L.) is a lignocellulosic byproduct widely available in the Brazilian Northeast region and due its high volume is a reason of huge environmental concern. But the lignocellulosic materials are renewable and abundant resources of sugars after submitted to enzymatic hydrolysis of cellulose and hemicellulose. For efficient hydrolysis is necessary to break the lignocellulosic netting that physically surrounds the cellulose fibers hindering contact between the enzyme and cellulose. The traditional delignification treatment employing drastic conditions of temperature and pH lead to the formation and release of some compounds that limit the hydrolysates use in biotechnological processes since it inhibits microbial action. The treatment with supercritical CO2 can be operated at lower temperatures avoiding inhibitors formation. Therefore, the aim of this study was to obtain reducing sugars from the husk coconut fiber through enzymatic hydrolysis of pretreated fiber with CO2 in supercritical conditions. Seven extraction conditions were studied varying the CO2 contact time with the coconut fiber (3 and 5 hours), polarity modifier (NaOH, NaHSO4 and ethanol) and maintaining as constants the dynamic extraction time (1 hour) and rapid depressurization at the end of process. The efficiency of extraction with supercritical CO2 to green coconut fiber delignification was based on the characterization of the fiber by the lignocellulosic composition, images of scanning electron microscopy and qualitative analysis of lignocellulosic composition spectroscopy infrared with Fourier transform and quantification of reducing sugars. Green coconut fiber presents lignin, cellulose and hemicellulose contents of 26.66, 46.37 and 16.18 g/100 g of dry coconut fiber, respectively. For enzymatic hydrolysis used a commercial enzyme composed of three major enzymes: cellulase, hemicellulase and β-glucosidases in two hydrolysis time (24 h and 72) and two enzymatic concentrations (6 and 30 g enzyme / g cellulose in total substrate) to be evaluated situations of commercial application and conditions de maximum yield. Treatment with supercritical CO2 caused changes in the physical and chemical structure of the fiber, increasing the porosity and decreasing the level of phenolic compounds, waxes and hydrogen bonds attenuation causing the delignification of coconut fiber. However, extraction with supercritical CO2 didn't significant increase reducing sugars fiber contents after enzymatic hydrolysis. Enzymatic hydrolysis performed in 72h caused up to 134% increase in reducing sugars compared to smaller hydrolysis time (24) for enzyme concentration of 30%. In general, enzymatic hydrolysis (72 hours and 30% of enzyme) of natural coconut fiber showed good values of reducing sugars (532,27 µmol glucose/g de dry coconut fiber) and may be used as a new lignocellulosic material from coconut which is underused. Reducing sugars obtained from natural coconut fiber can pass through purification process of purification of some sugar of int...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.