Abstract. The notion of determinant groupoid is a natural outgrowth of the theory of the Sato Grassmannian and thus well-known in mathematical physics. We briefly sketch here a version of the theory of determinant groupoids over an artinian local ring, taking pains to put the theory in a simple concrete form suited to number-theoretical applications. We then use the theory to give a simple proof of a reciprocity law for the Contou-Carrère symbol. Finally, we explain how from the latter to recover various classical explicit reciprocity laws on nonsingular complete curves over an algebraically closed field, namely sum-of-residues-equals-zero, Weil reciprocity, and an explicit reciprocity law due to Witt. Needless to say, we have been much influenced by the work of Tate on sum-of-residues-equals-zero and the work of Arbarello-DeConcini-Kac on Weil reciprocity. We also build in an essential way on a previous work of the second-named author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.