A key property of Majorana zero modes is their protection against local perturbations. In the standard picture, this protection is guaranteed by a high degree of spatial nonlocality of the Majoranas, namely a suppressed wave-function overlap, in the topological phase. However, a careful characterisation of resilience to local noise goes beyond mere spatial separation, and must also take into account the projection of wave-function spin. By considering the susceptibility of a given zero mode to different local perturbations, we find the relevant forms of spin-resolved wave-function overlaps that measure its resilience. We quantify these overlaps and study their dependence with nanowire parameters in several classes of experimentally relevant configurations. These include nanowires with inhomogeneous depletion and induced pairing, barriers and quantum dots. Smooth inhomogeneities have been shown to produce near-zero modes, so-called pseudo-Majoranas, below the critical Zeeman field in the bulk. Surprisingly, their resilience is found to be comparable or better than that of topological Majoranas in realistic systems. We further study how accurately their overlaps can be estimated using a purely local measurement on one end of the nanowire, accessible through conventional transport experiments. In uniform nanowires this local estimator is remarkably accurate. In inhomogeneous cases it is less accurate but can still provide reasonable estimates for potential inhomogeneities of the order of the superconducting gap. We further analyse the zero mode wave-function structure, spin texture and spectral features associated with each type of inhomogeneity. All our results highlight the strong connection between internal wave-function degrees of freedom, nonlocality and protection in smoothly inhomogeneous nanowires. arXiv:1807.11924v3 [cond-mat.mes-hall]
Andreev bound states (ABSs) in hybrid semiconductor-superconductor nanowires can have nearzero energy in parameter regions where band topology predicts trivial phases. This surprising fact has been used to challenge the interpretation of a number of transport experiments in terms of nontrivial topology with Majorana zero modes (MZMs). We show that this ongoing ABS versus MZM controversy is fully clarified when framed in the language of non-Hermitian topology, the natural description for open quantum systems. This change of paradigm allows us to understand topological transitions and the emergence of pairs of zero modes more broadly, in terms of exceptional point (EP) bifurcations of system eigenvalue pairs in the complex plane. Within this framework, we show that some zero energy ABSs are actually non-trivial, and share all the properties of conventional MZMs, such as the recently observed 2e 2 /h conductance quantization. From this point of view, any distinction between such ABS zero modes and conventional MZMs becomes artificial. The key feature that underlies their common non-trivial properties is an asymmetric coupling of Majorana components to the reservoir, which triggers the EP bifurcation. arXiv:1807.04677v1 [cond-mat.mes-hall]
A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.