In several mammals a sperm reservoir is formed at the isthmus of the Fallopian tube, providing viable, potentially fertile sperm for an extensive period. In pig (Sus scrofa) the spermadhesin AQN-1 seems to be involved in the establishment of the sperm reservoir. The pig oviductal protein, sperm binding glycoprotein (SBG), binds to sperm and exposes carbohydrate groups that can be recognized by AQN-1. In this study we obtain anti-SBG polyclonal antibodies and use them to localize SBG in the oviduct. Immunohistochemical analysis shows that SBG is present at the apical surface of isthmic and ampullar epithelial cells. The presence of SBG is limited to the upper two-thirds of the crypts of the isthmus and to cells located near the oviductal lumen in the ampulla. The ratio of the amount of SBG detected by western blot is 1:3 (ampulla:isthmus). Sperm entering the Fallopian tube probably contact the epithelial cells at the lumen before they reach the cells at the bottom of the folds. In vitro sperm can bind to isthmus and, at less extent, to ampulla. Thus, the localization and the relative amount of SBG in the isthmus and ampulla of pig's oviduct are compatible with its possible function in sperm binding to oviductal epithelial cells.
The fresh water polyp Hydra can reproduce asexually by forming buds. These buds separate from the parent animal due to the development of foot tissue in a belt-like region and the formation of a constriction basal to that region. A single pulse treatment with activators of protein kinase C, including 1,2-dioctanoyl-rac-glycerol and 12-O-tetradecanoylphorbol-13-acetate, and inhibitors of various protein kinases, including staurosporine, H-7 and genistein, interfered with foot and constriction formation. The buds did not separate. Therewith, branched animals were formed, some of which bore a lateral foot patch. Simultaneous treatments with an activator and inhibitor led to a higher amount of branched animals than treatments with one of these agents alone. Based on the different specificities of the activators and inhibitors used we propose that activation of a protein kinase C and/or inhibition of a probably non-C-type protein kinase interfere with the decrease of positional value at the bud's base, a process necessary to initiate the pattern forming system leading to foot formation.
Previous studies have demonstrated a negative correlation between intestinal alkaline phosphatase (IAP) activity and calcium (Ca) absorption in the gut, as IAP acts as a protective mechanism inhibiting high Ca entry into enterocytes, preventing Ca overload. Here we evaluated Ca absorption and bone properties in knockout mice (KO) completely devoid of duodenal IAP (Akp3 mice). Female C57BL/6 control mice (WT, n = 7) and KO mice (n = 10) were used to determine Ca absorption in vivo and by in situ isolated duodenal loops followed by histomorphometric analysis of duodenal villi and crypts. Bone mineral density, morphometry, histomorphometry and trabecular connectivity and biomechanical properties were measured on bones. We observed mild atrophy of the villi with lower absorption surface and a significantly higher Ca uptake in KO mice. While no changes were seen in cortical bone, we found better trabecular connectivity and biomechanical properties in the femurs of KO mice compared to WT mice. Our data indicate that IAP KO mice display higher intestinal Ca uptake, which over time appears to correlate with a positive effect on the biomechanical properties of trabecular bone.
Schistosomiasis is a disease caused by parasitic flatworms of the genus Schistosoma, whose diagnosis has limitations, such as the low sensitivity and specificity of parasitological and immunological methods, respectively. In the present study an alternative molecular technique requiring previous standardization was carried out using the polymerase chain reaction (PCR) for the amplification of a 121-bp highly repetitive sequence for Schistosoma mansoni. DNA was extracted from eggs of S. mansoni by salting out. Different conditions were standardized for the PCR technique, including the concentration of reagents and the DNA template, annealing temperature and number of cycles, followed by the determination of the analytical sensitivity and specificity of the technique. Furthermore, the standardized PCR technique was employed in DNA extracted, using Chelex®100, from samples of sera of patients with an immunodiagnosis of schistosomiasis. The optimal conditions for the PCR were 2.5 mm MgCl2, 150 mm deoxynucleoside triphosphates (dNTPs), 0.4 μm primers, 0.75 U DNA polymerase, using 35 cycles and an annealing temperature of 63°C. The analytical sensitivity of the PCR was 10 attograms of DNA and the specificity was 100%. The DNA sequence was successfully detected in the sera of two patients, demonstrating schistosomiasis transmission, although low, in the community studied. The standardized PCR technique, using smaller amounts of reagents than in the original protocol, is highly sensitive and specific for the detection of DNA from S. mansoni and could be an important tool for diagnosis in areas of low endemicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.