Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Allergen immunotherapy (AIT) is the sole disease-modifying treatment for allergic rhinitis; it prevents rhinitis from progressing to asthma and lowers medication use. AIT against mites, insect venom, and certain kinds of pollen is effective. The mechanism of action of AIT is based on inducing immunological tolerance characterized by increased IL-10, TGF-β, and IgG4 levels and Treg cell counts. However, AIT requires prolonged schemes of administration and is sometimes associated with adverse reactions. Over the last decade, novel forms of AIT have been developed, focused on better allergen identification, structural modifications to preserve epitopes for B or T cells, post-traductional alteration through chemical processes, and the addition of adjuvants. These modified allergens induce clinical-immunological effects similar to those mentioned above, increasing the tolerance to other related allergens but with fewer side effects. Clinical studies have shown that molecular AIT is efficient in treating grass and birch allergies. This article reviews the possibility of a new AIT to improve the treatment of allergic illness.
Genetic association research in AERD has evaluated studies of SNPs in metabolic pathways related to arachidonic acid. Recently, whole genome analysis strategies have allowed the detection of new genetic variants that were previously not considered. Furthermore, these studies have identified SNPs that are associated with inflammatory processes, which could serve as diagnostic markers or predictors of the therapeutic response.
Background Adenoviruses are highly contagious pathogens which cause respiratory disease particularly in children; they may induce severe disease in infants. Human neutrophil peptides (HNPs) have been found to exhibit antiadenoviral activity. Thus, we have investigated HNPs in nasal aspirates (NAs) of children suffering from adenoviral common cold. Objective To investigate the release of HNP-1–4 in adenovirus infection and the relationship with self-limiting upper respiratory tract infections. Methods Nasal aspirate samples (n=14) were obtained from children (aged 6–12 years) infected with adenovirus between June 2012 and December 2015. Control samples were taken 4 weeks after infection when the children were asymptomatic. Levels of HNPs were measured using an enzyme-linked immunosorbent assay (ELISA). Results There were increased levels of HNP-1, -3, and -4, but not HNP-2, in nasal aspirates (NAs) during adenovirus infections compared to healthy specimens (p ≤ 0.01). Moreover, there was also increase in the neutrophil count, which is a known cell source of HNPs. Conclusion Our finding supports the involvement of HNP-1, -3, and -4 in naturally occurring cold in children infected with adenovirus. Because of their known antiviral properties, it is tempting to hypothesize that HNPs might play a protective role in adenovirus-induced respiratory disease; however, this remains to be shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.