Environmental factors are assumed to play an important role in the shaping of craniofacial morphology. Here we propose a statistical approach which can be of utility in estimating the magnitude and localization of a particular nongenetic factor upon the specific functional components of the skull. Our analysis is a combination of previous attempts of apportionment of variance and the application of craniofunctional theory. The effect of subsistence strategy on craniofacial functional components was studied on 18 populations of hunter-gatherers and farmers from South America. Results demonstrate that the environmental factors studied likely influenced the masticatory component's size and shape. Even when this effect is not large enough to clearly differentiate among subsistence strategies (since whole craniofacial variation among populations remains greater), the method used here provides interesting clues to localize plastic or adaptive responses to external stimuli.
Early hominins formed large and thick-enamelled cheek-teeth within relatively short growth periods as compared with modern humans. To understand better the developmental basis of this process, we measured daily enamel increments, or cross striations, in 17 molars of Plio-Pleistocene hominins representing seven different species, including specimens attributed to early Homo . Our results show considerable variation across species, although all specimens conformed to the known pattern characterised by greater values in outer than inner enamel, and greater cuspal than cervical values. We then compared our results with the megadontia index, which represents tooth size in relation to body mass, for each species to assess the effect of daily growth rates on tooth size. Our results indicate that larger toothed (megadont) taxa display higher rates or faster forming enamel than smaller toothed hominins. By forming enamel quickly, large tooth crowns were able to develop within the constraints of shorter growth periods. Besides daily increments, many animals express long-period markings (striae of Retzius) in their enamel. We report periodicity values (number of cross striations between adjacent striae) in 14 new specimens of Australopithecus afarensis , Paranthropus aethiopicus , Paranthropus boisei , Homo habilis , Homo rudolfensis and Homo erectus , and show that long-period striae express a strong association with male and average male-female body mass. Our results for Plio-Pleistocene hominins show that the biological rhythms that give rise to long-period striae are encompassed within the range of variation known for modern humans, but show a lower mean and modal value of 7 days in australopithecines. In our sample of early Homo , mean and modal periodicity values were 8 days, and therefore similar to modern humans. These new data on daily rates of enamel formation and periodicity provide a better framework to interpret surface manifestations of internal growth markings on fossil hominin tooth crowns. Importantly, our data on early hominin cross striation variation may now contribute towards solving difficult taxonomic diagnoses where much may depend on fragmentary molar remains and enamel structure.
Pygmy hunter-gatherers from Central Africa have shared a network of socioeconomic interactions with non-Pygmy Bantu speakers since agropastoral lifestyle spread across sub-Saharan Africa. Ethnographic studies have reported that their diets differ in consumption of both animal proteins and starch grains. Hunted meat and gathered plant foods, especially underground storage organs (USOs), are dietary staples for pygmies. However, scarce information exists about forager–farmer interaction and the agricultural products used by pygmies. Since the effects of dietary preferences on teeth in modern and past pygmies remain unknown, we explored dietary history through quantitative analysis of buccal microwear on cheek teeth in well-documented Baka pygmies. We then determined if microwear patterns differ among other Pygmy groups (Aka, Mbuti, and Babongo) and between Bantu-speaking farmer and pastoralist populations from past centuries. The buccal dental microwear patterns of Pygmy hunter-gatherers and non-Pygmy Bantu pastoralists show lower scratch densities, indicative of diets more intensively based on nonabrasive foodstuffs, compared with Bantu farmers, who consume larger amounts of grit from stoneground foods. The Baka pygmies showed microwear patterns similar to those of ancient Aka and Mbuti, suggesting that the mechanical properties of their preferred diets have not significantly changed through time. In contrast, Babongo pygmies showed scratch densities and lengths similar to those of the farmers, consistent with sociocultural contacts and genetic factors. Our findings support that buccal microwear patterns predict dietary habits independent of ecological conditions and reflect the abrasive properties of preferred or fallback foods such as USOs, which may have contributed to the dietary specializations of ancient human populations.
Odontometric patterns and the degree of sexual dimorphism in dental size differ among Central African groups, indicating adaptation to their different forager and farmer lifestyles. In particular, the admixture of Bantu-speakers in Baka populations is smaller than that in other western Pygmy groups. The greater dental phenetic diversity in Baka compared to that of the smaller-toothed farmers suggests that ecogenetic and microevolutionary factors are influencing a particular divergence scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.