To our knowledge, this is the first attempt to use the DLD-SVM approach to detect vascular abnormalities. Good specificity, sensitivity and agreement with experts, as well as a short processing time, show that our method can facilitate medical diagnosis and reduce evaluation time by attracting the reader's attention to suspect regions.
A problem of bounding the generalization error of a classifier f ∈ conv(H), where H is a "base" class of functions (classifiers), is considered. This problem frequently occurs in computer learning, where efficient algorithms of combining simple classifiers into a complex one (such as boosting and bagging) have attracted a lot of attention. Using Talagrand's concentration inequalities for empirical processes, we obtain new sharper bounds on the generalization error of combined classifiers that take into account both the empirical distribution of "classification margins" and an "approximate dimension" of the classifiers and study the performance of these bounds in several experiments with learning algorithms. 1991 AMS subject classification: primary 62G05, secondary 62G20, 60F15
We present a bioinspired algorithm which performs dimensionality reduction on datasets for visual exploration, under the assumption that they have a clustered structure. We formulate a decision-making strategy based on foraging theory, where a software agent is viewed as an animal, a discrete space as the foraging landscape, and objects representing points from the dataset as nutrients or prey items. We apply this algorithm to artificial and real databases, and show how a multi-agent system addresses the problem of mapping highdimensional data into a two-dimensional space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.