The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject’s performance during the test execution.
Due to the increasing age of the European population, there is a growing interest in performing research that will aid in the timely and unobtrusive detection of emerging diseases. For such tasks, mobile devices have several sensors, facilitating the acquisition of diverse data. This study focuses on the analysis of the data collected from the mobile devices sensors and a pressure sensor connected to a Bitalino device for the measurement of the Timed-Up and Go test. The data acquisition was performed within different environments from multiple individuals with distinct types of diseases. Then this data was analyzed to estimate the various parameters of the Timed-Up and Go test. Firstly, the pressure sensor is used to extract the reaction and total test time. Secondly, the magnetometer sensors are used to identify the total test time and different parameters related to turning around. Finally, the accelerometer sensor is used to extract the reaction time, total test time, duration of turning around, going time, return time, and many other derived metrics. Our experiments showed that these parameters could be automatically and reliably detected with a mobile device. Moreover, we identified that the time to perform the Timed-Up and Go test increases with age and the presence of diseases related to locomotion.
Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer signals for the automatic recognition of different diseases, and it may empower the different treatments with the use of less invasive and painful techniques for patients. This paper aims to provide a systematic review of the studies available in the literature for the automatic recognition of different diseases by exploiting accelerometer sensors. The most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implemented for the automatic recognition of Parkinson’s disease reported an accuracy of 94%. The recognition of other diseases is investigated in a few other papers, and it appears to be the target of further analysis in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.