The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.
Airdrop testing of parachutes is a complicated endeavor that requires the custom design and certification of many critical components. The most direct path to certifying a component is to perform full scale testing with margin over the maximum loads expected to be seen in operation. However, other constraints often preclude the opportunity to perform full scale testing. In this paper, we present a case study where a problem arises in a joint that had been certified with a full scale test. There was no time or budget available to repeat the full scale testing after a redesign of the joint. Instead, we present a method of testing each failure mode at the component level to support a certification by analysis approach. The analysis itself was not complicated, but tradeoffs had to be made between different failure modes to arrive at the optimal design. The same approach was also applied back to the original joint to confirm that the failure mode that was not seen in full scale testing would have been caught by the proposed analysis. In the end, the new design was certified by analysis and worked without issue for the final six airdrop tests that used this joint. NomenclatureCM = center of mass CPAS = capsule parachute assembly system MOS = margin of safety PCDTV = parachute compartment drop test vehicle PHDJ = PTV Hold Down Joint PTV = parachute test vehicle WLL = working load limit
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.