ABSTRACT:In this review, the beginnings and evolution of the cold gas spray (CGS) technique are described, followed by the main fundamental aspects of the technique together with a description of the several spraying systems up to date. Sequentially, the main spray parameters and their influence on the properties of the coatings are reported. Afterwards, the most important methodologies for preparing the feedstock powders to be sprayed, the effect of the powder composition, microstructure, particle size and shape on the properties of the coatings are discussed. The nature of the spray gun and nozzle, and the substrate pre-treatments were also discussed. With regard to microstructure and properties, the chemical and physical characterization of the coatings and the performance in protecting the substrates against corrosion together with some mechanical properties are presented and compared. The lacking systematic studies about the great part of investigated systems is the main drawback to compare the published results. Closing this review, the main applications, and the potentialities of the CGS coatings are evidenced.
In this work, the influence of ceric ions (Ce(SO4)2) addition to the hydrolysis solution on the corrosion protection afforded by organic-inorganic hybrid coating obtained from tetraethoxysilane (TEOS) and 3-methacryloxy-propyl-trimethoxysilane (MPTS) to a carbon steel substrate in 0.1 mol L-1 NaCl solution was studied. Open circuit potential (EOC) and electrochemical impedance spectroscopy (EIS) experiments were carried out and showed that the protection afforded by the organic-inorganic hybrid coating was extremely dependent on the Ce4+ ions amount. These results were in close agreement with optical microscopy observation of the degrading surfaces, both procedures showing that more protective coating was produced when 500 ppm of Ce4+ ions were added to the organic-inorganic hybrid solution. The chemical state of the organic-inorganic hybrid coating investigated by X-ray photoelectron spectroscopy (XPS) indicated that the addition of Ce4+ ions enhances the polycondensation degree of the organic-inorganic hybrid coating leading to a denser siloxane (Si-O-Si) network. A strategy using laser-induced breakdown spectroscopy (LIBS) and UV-Vis spectrometry was set up in order to verify, respectively, the presence of Ce ions within the coating structure and its oxidation state. LIBS results confirmed the incorporation of Ce ions in the coating, which, according to UV-Vis measurements, are mainly in the (IV)-oxidation state.
The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The X-ray dispersive energy spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4 and NaOH, and also improve the initial events related to cell-mediated bone deposition.
The objective of the present study was to evaluate the corrosion resistance of the experimental alloy Ti-35Nb-7Zr-5Ta, modified by laser beam, in a physiological solution of 0.9% NaCl. This evaluation was carried out by open circuit potential analysis (EOCP), potentiodynamic polarization curves and cyclic polarization curves. The open circuit potential curves show the specimen irradiated by laser beam at 35 Hz presented a more stable and corrosion resistant surface. It was observed in the polarization curves, low current densities in the order of nA /cm2, for all specimen indicating an expected passive behavior for the investigated alloy. The cyclic polarization curves show that for specimen treated with laser, the potential for repassivation (Er) is greater in relation to the potential for corrosion (Ecorr), which indicates greater resistance to corrosion of metal alloys when treated with laser.
Há algumas décadas, muito se tem refletido e discutido sobre a importância e as aplicabilidades da comunicação e sua simbiose com a tecnologia, principalmente em tempos de disseminação das redes de comunicação digital. Porém, o que vinha sendo debatido de forma parcimoniosa, numa tentativa de compreender de forma mais profunda, ganhou certa notoriedade nos últimos dias, visto a urgência de atender as demandas sociais. Almejando reflexionar as reivindicações da sociedade sobre essa temática que se insere a obra: O Pensamento de Pierre Lévy – comunicação e tecnologia, de Guaracy Carlos da Silveira, publicada em 2019 pela Editora Appris. A presente composição, tem como escopo, apresentar a evolução das ideias de Pierre Lévy a uma recente geração de leitores que já nasceram imersos em um cenário de constantes mudanças tecnológicas, cotejando a pertinência do seu pensamento no contexto atual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.