The metastatic spread of a tumor is dependent upon the ability of the tumor to stimulate surrounding stromal cells to express enzymes required for tissue remodeling. The immunoglobulin superfamily protein basigin (EMMPRIN/CD147) is a cell surface glycoprotein expressed by tumor cells that stimulates matrix metalloproteinase and vascular endothelial growth factor expression in stromal cells. The ability of basigin to stimulate expression of molecules involved in tissue remodeling and angiogenesis makes basigin a potential target for the development of strategies to block metastasis. However, the identity of the cell surface receptor for basigin remains controversial. The goal of this study was to determine the identity of the receptor for basigin. Using a novel recombinant basigin protein (rBSG) corresponding to the extracellular domain of basigin, it was demonstrated that the native, nonglycosylated rBSG protein forms dimers in solution. Furthermore, rBSG binds to the surface of uterine fibroblasts, activates the ERK1/2 signaling pathway, and induces expression of matrix metalloproteinases 1, 2, and 3. Proteins that interact with rBSG were isolated using a biotin label transfer technique and sequenced by matrixassisted laser desorption ionization tandem mass spectrophotometry. The results demonstrate that rBSG interacts with basigin expressed on the surface of fibroblasts and is subsequently internalized. During internalization, rBSG associates with a novel form of human basigin (basigin-3). It was concluded that cell surface basigin functions as a membrane receptor for soluble basigin and this homophilic interaction is not dependent upon glycosylation of the basigin ligand.The metastatic spread of cancer cells within host tissue is dependent upon the local microenvironment surrounding the primary tumor. Within this microenvironment, cancer cells stimulate surrounding stromal cells to express factors required for remodeling of the host tissue, thus allowing for the survival, proliferation, and metastasis of the tumor (1). Therefore, an understanding of the molecules mediating tumor-stromal cell interactions is critical for the development of strategies needed to diagnose and treat metastatic cancers. This need is underscored by the fact that many molecules identified as biological markers for metastatic cells are also expressed by host cells under normal physiological conditions (2). One particularly good example of such a molecule is the cell surface glycoprotein basigin. Basigin is an integral membrane glycoprotein belonging to the immunoglobulin superfamily, and it is expressed on numerous cell types (reviewed in Refs. 2-4). Originally identified in LX-1 lung carcinoma cells as a secreted factor capable of stimulating the collagenase activity of human fibroblasts, basigin has been identified independently in several different model systems resulting in a long list of acronyms for this molecule including tumor collagenase stimulatory factor (5-7), EMMPRIN (8), neurothelin (9), OX-47 (10), gp42 (11), CE9 (12), ...
Uterine leiomyomas are benign uterine tumors characterized by extracellular matrix remodeling, increased collagen deposition, and increased smooth muscle cell (SMC) proliferation. The reactive oxygen species (ROS) producing NADPH oxidase complex has been shown to be involved in the signaling pathways of several growth factors, cytokines, and vasoactive agents that stimulate proliferation of a variety of cell types. Our objective was to test the hypothesis that ROS derived from NADPH oxidase is a necessary component of the MAP kinase mitogenic pathway activated by platelet derived growth factor (PDGF) and epidermal growth factor (EGF) in leiomyoma SMCs (LSMCs). Primary cell cultures of LSMCs were used as our experimental model. Our results showed that stimulation of these cells with PDGF or EGF caused a marked increase in intracellular ROS production and that the NADPH oxidase inhibitor, DPI, blocks ROS production. In addition, inhibition of ROS production by NADPH oxidase inhibitors blocked, in a dose-dependent manner, the EGF- and PDGF-induced increase in [(3)H]thymidine incorporation by LSMCs. Furthermore, an exogenous source of ROS, hydrogen peroxide, was sufficient to stimulate [(3)H]thymidine incorporation in LSMCs but did not affect COL1A2 and COL3A1 mRNA levels. Inhibition of the NADPH oxidase complex decreased PDGF-induced MAPK1/MAPK3 activation, whereas exogenous hydrogen peroxide induced MAPK1/MAPK3 activation. This article is the first report suggesting the presence of the NADPH oxidase system and its importance in mitogenic signaling pathways in LSMCs. The necessity of NADPH oxidase-derived ROS for EGF and PDGF signaling pathways leading to cell proliferation points to another potential therapeutic target for treatment and/or prevention of uterine leiomyomas.
This study aimed to characterize the endometrial transcriptome and functional pathways overrepresented in the endometrium of cows treated to ovulate larger (≥13 mm) versus smaller (≤12 mm) follicles. Nelore cows were presynchronized prior to receiving cloprostenol (large follicle [LF] group) or not (small follicle [SF] group), along with a progesterone (P4) device on Day (D) -10. Devices were withdrawn and cloprostenol administered 42-60 h (LF) or 30-36 h (SF) before GnRH agonist treatment (D0). Tissues were collected on D4 (experiment [Exp.] 1; n = 24) or D7 (Exp. 2; n = 60). Endometrial transcriptome was obtained by RNA-Seq, whereas proliferation and apoptosis were assessed by immunohistochemistry. Overall, LF cows developed larger follicles and corpora lutea, and produced greater amounts of estradiol (D-1, Exp. 1, SF: 0.7 ± 0.2; LF: 2.4 ± 0.2 pg/ml; D-1, Exp. 2, SF: 0.5 ± 0.1; LF: 2.3 ± 0.6 pg/ml) and P4 (D4, Exp. 1, SF: 0.8 ± 0.1; LF: 1.4 ± 0.2 ng/ml; D7, Exp. 2, SF: 2.5 ± 0.4; LF: 3.7 ± 0.4 ng/ml). Functional enrichment indicated that biosynthetic and metabolic processes were enriched in LF endometrium, whereas SF endometrium transcriptome was biased toward cell proliferation. Data also suggested reorganization of the extracellular matrix toward a proliferation-permissive phenotype in SF endometrium. LF endometrium showed an earlier onset of proliferative activity, whereas SF endometrium expressed a delayed increase in glandular epithelium proliferation. In conclusion, the periovulatory endocrine milieu regulates bovine endometrial transcriptome and seems to determine the transition from a proliferation-permissive to a biosynthetic and metabolically active endometrial phenotype, which may be associated with the preparation of an optimally receptive uterine environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.