Maintaining sustainable development in semi-arid regions is a complex task due to scarce precipitation, with notable temporal and spatial variations that complicate planning and proper management of water resources. Most of the water extractions from the aquifers in southeast Spain are carried out to supply a growing agricultural sector and increasingly successful tourism, which is the case of the Sierra de Gador-Campo de Dalias system. Savings, reutilization and awareness among water users are essential elements in any sustainable water policy. Some of the possible solutions proposed that offer low environmental impacts include certain infrastructure works, such as dams, ditches or recharge in gravel pits. Also, desalinization plants constitute a technical alternative in theory but involve high costs. The integration of all these resources, together with their proper management, is necessary to ensure the future water supply and economic growth in the region, safeguarding the state of its aquifers that are currently intensely overexploited.
Agricultural irrigation represents the main use of global water resources. Irrigation has an impact on the environment, and scientific evidence suggests that it inevitably leads to salinization of both soil and aquifers. The effects are most pronounced under arid and semi-arid conditions. In considering the varied impacts of irrigation practices on groundwater quality, these can be classed as either directthe direct result of applying water and accompanying agrochemicals to croplandor indirectthe effects of irrigation abstractions on groundwater hydrogeochemistry. This paper summarizes and illustrates through paradigmatic case studies the main impacts of irrigation practices on groundwater salinity. Typically, a diverse range of groundwater salinization processes operating concomitantly at different time scales (from days to hundreds of years) is involved in agricultural irrigation. Case studies suggest that the existing paradigm for irrigated agriculture of focusing mainly on crop production increases has contributed to widespread salinization of groundwater resources.
Few studies have focused on the relationship between the various causes of groundwater level fluctuations and the seawater intrusion process, due to the complexity of this relationship, being the aim of this paper. Piezometric fluctuations in coastal aquifers are determined by a number of processes and their characterization depends on the complexity of the aquifer stratigraphy, as well as many other hydrodynamic factors. The precipitation regime, tides, wave setup and storm surges, as well as atmospheric pressure are the most relevant of these processes. By means of a series of observations made at an experimental site in south-eastern Spain, this study demonstrates the complexity of water table fluctuations in coastal zones. The study employed two piezometers situated very close to the shoreline, excavated in detritic deposits with highly variable hydraulic conductivity (semi-confined aquifer). Continuous measurements were taken of hydraulic head, tide height, electrical conductivity and water temperature. The study concludes that precipitation has the greatest effect on piezometric level, followed by atmospheric pressure and wave action, while the semi-diurnal and fortnightly tidal cycles caused variations of smaller amplitude in the piezometric logs. All these oscillations affect the position of the fresh water-seawater interface. The attenuation of the tidal amplitude observed at the two monitoring points was lower than the value calculated using analytical solutions, and this is due to the semi-confined nature of the aquifer. The calculated tidal efficiency is around 0.4-0.5, giving a t lag of about 3 h, with a 10-15 min delay between monitoring boreholes, P-II and PI. We also identified that the response of water conductivity and temperature to tidal cycles is not synchronized with the variations in the piezometric level influenced by tidal fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.