Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare disease characterized by high serum ferritin levels, congenital bilateral cataracts, and the absence of tissue iron overload. This disorder is produced by mutations in the iron responsive element (IRE) located in the 5′ untranslated regions (UTR) of the light ferritin (FTL) gene. A canonical IRE is a mRNA structure that interacts with the iron regulatory proteins (IRP1 and IRP2) to post-transcriptionally regulate the expression of proteins related to iron metabolism. Ferritin L and H are the proteins responsible for iron storage and intracellular distribution. Mutations in the FTL IRE abrogate the interaction of FTL mRNA with the IRPs, and de-repress the expression of FTL protein. Subsequently, there is an overproduction of ferritin that accumulates in serum (hyperferritinemia) and excess ferritin precipitates in the lens, producing cataracts. To illustrate this disease, we report two new families affected with hereditary hyperferritinemia-cataract syndrome with previous known mutations. In the diagnosis of congenital bilateral cataracts, HHCS should be taken into consideration and, therefore, it is important to test serum ferritin levels in patients with cataracts.
Word count abstract: 162 Word count main text: 1198 Number of Figure/Table: 2 Number of references: 24 2 Key points:• Targeted mutagenesis of the 3'IRE of DMT1 in mice reveals its importance for maintenance of systemic iron homeostasis.• The 3'IRE stimulates intestinal DMT1 expression and prevents hypoferremia during early life, but exerts opposite effects in adulthood.
AbstractDivalent metal transporter 1 (DMT1) is essential for dietary iron assimilation and erythroid iron acquisition.The 3' untranslated region of the murine DMT1 mRNA contains an iron responsive element (IRE) that is conserved in humans but whose functional role remains unclear. We generated and analyzed mice with targeted disruption of the DMT1 3'IRE. These animals display hypoferremia during the suckling period, associated with a reduction of DMT1 mRNA and protein in the intestine. In contrast, adult mice exhibit hyperferremia, accompanied by enlargement of hepatic and splenic iron stores. Intriguingly, disruption of the DMT1 3'IRE in adult animals augments intestinal DMT1 expression, in part due to increased mRNA translation. Hence, during postnatal growth, the DMT1 3'IRE promotes intestinal DMT1 expression and secures iron sufficiency; in adulthood, it suppresses DMT1 and prevents systemic iron loading. This work demonstrates that the 3'IRE of DMT1 plays a role in the control of DMT1 expression and systemic iron homeostasis, and reveals an age--dependent switch in its activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.