Jason W. 2013 Multi-generational longdistance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography, 36 (4). 474-486. 10.1111/j.1600-0587.2012.07738.x Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. (up to 60 degrees of latitude). The cycle comprises an annual poleward advance of the 73 populations in spring followed by an equatorward return movement in autumn, with returning 74 individuals potentially flying thousands of kilometres. We show that many long-distance 75 migrants take advantage of favourable winds, moving downwind at high elevation (from 76 some tens of metres from the ground to altitudes over 1,000 m), pointing at strong similarities 77 in the flight strategies used by V. cardui and other migrant Lepidoptera. Our results reveal the 78 highly successful strategy that has evolved in these insects, and provide a useful framework 79 for a better understanding of long-distance seasonal migration in the temperate regions 80 worldwide. 81 82 5
Aim We developed a model enabling us to evaluate the contribution of both natural and human-related factors to butterfly species richness in Catalonia, a Mediterranean area that harbours one of the most diverse butterfly faunas in Europe. LocationThe study was carried out in Catalonia (north-east Iberian Peninsula), a region of 31,930 km 2 lying between the Pyrenees, the Ebro depression and the Mediterranean sea.Methods Data from the Catalan Butterfly Monitoring Scheme were used to assess butterfly species richness from 55 transects spread all over the region. Three groups of environmental variables likely to affect the presence of butterfly species were calculated, above all from geographic information system data: (1) climatology and topography, (2) vegetation structure and (3) human disturbance. Because climatic and topographic variables are expected to be strongly correlated, we first performed a principal component analysis (PCA) to create a summarizing factor that would account for most of the variance within this set of variables. Subsequently, a backward stepwise multiple regression was performed in order to assess the effects of environmental factors on butterfly species richness.Results A total of 131 species were detected in the monitoring transects, representing 75.7% of the butterfly fauna known from Catalonia. Mean species richness per transect and per year was 41.4, although values varied greatly among sites (range: 14-76.8). The final regression model explained more than 80% of the total variance, which indicated a strong association between butterfly species richness and the studied environmental factors. The model revealed the very important contribution of climatic and topographic variables, which were combined into a single factor in the PCA. In contrast to what has been found in other, more northerly countries, species richness was negatively correlated with temperature and positively correlated with rainfall, except for extreme cold and wet conditions. This may be a consequence of the predictably adverse effects of the Mediterranean summer drought on herbivorous insects, and the fact that the limits of distribution of many butterflies correlate well with climatic variables. Human disturbance (defined as the proportion of urban and agricultural landscape cover in buffer areas of 5 km around the transect sites) was the second most important predictor for species richness. We found that a significant decrease in species numbers was associated with an increase in human pressure, a finding that indicates that not only building development, but also modern-day agricultural practices are detrimental to the conservation of Mediterranean butterflies. Surprisingly, vegetation variables had an almost negligible effect on butterfly species richness.
Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming.
SUMMARYIn Europe, and particularly in the Mediterranean Basin, the abandonment of traditional land-use practices has been reported as one of the main causes of decline for open-habitat species. Data from large-scale bird and butterfly monitoring schemes in the north-east Iberian Peninsula were used to evaluate the impact that land abandonment has had on local biodiversity. Species’ habitat preferences, along a gradient from open to forest habitats, were significantly related to population trends: for both birds and butterflies, open-habitat species showed the most marked declines while forest species increased moderately. Multi-species indicators for tracking the impact of land abandonment on bird and butterfly populations were developed using habitat preference estimates and population trend indices. The patterns shown by these indicators were in line with the changes occurring in forest cover in the monitoring sites. This study reveals that multi-species indicators based on monitoring data from different taxonomic groups (here, birds and butterflies) may usefully be employed to track impacts of environmental change on biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.