A gene encoding an ABC transporter in the dermatophyte Trichophyton rubrum, TruMDR1, was cloned by PCR using degenerate primers. The open reading frame of TruMDR1 is 4838 bp long and the deduced amino acid sequence shows high homology with ABC transporters involved in drug efflux of other fungi. The effect of chemicals on the expression level of mRNAs of this gene was analysed by Northern blot. An increase in expression level was observed when the fungus was exposed to ethidium bromide, ketoconazole, cycloheximide, fluconazole, griseofulvin, imazalil and itraconazole, suggesting the participation of this gene in drug efflux in this dermatophyte. The identification of a gene potentially involved in cellular detoxification in a pathogenic fungus is the first step towards knowing molecular events related to antifungal resistance.
Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45% recovery. The glucoamylase of strain 15.8 was purified 71-fold by CMCellulose and Concanavalin A-Sepharose chromatography, with 7.38% recovery. Temperature and pH optima were in the range of 50-60ºC and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60ºC. The glucoamylase activities were enhanced by several ions (e.g. Mn 2+ and Ca 2+ ) and inhibited by β-mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.