A major factor in the folding of proteins is the burying of hydrophobic side chains. A specific example is the packing of alpha-helices on beta-sheets by interdigitation of nonpolar side chains. The contributions of these interactions to the energetics of protein stability may be measured by simple protein engineering experiments. We have used site-directed mutagenesis to truncate hydrophobic side chains at an alpha-helix/beta-sheet interface in the small ribonuclease from Bacillus amyloliquefaciens (barnase). The decreases in stability of the mutant proteins were measured by their susceptibility to urea denaturation. Creation of a cavity the size of a -CH2-group destabilizes the enzyme by 1.1 kcal mol-1, and a cavity the size of three such groups by 4.0 kcal mol-1.
The importance of two buried salt bridges in barnase in the stability of its folded state, the major transition rate for unfolding, and a folding intermediate has been analyzed by protein engineering, kinetic, and thermodynamic studies. The aspartate residues in the bridges Arg69-Asp93 and Arg83-Asp75 were replaced by the isosteric analogue asparagine, while various replacements were probed for the positively charged arginine partners. The mutations are very destabilizing, lowering stability by up to 5.4 kcal/mol. A value of 3.0-3.5 kcal/mol was derived for the coupling energy between Arg and Asp from a double mutant cycle analysis. Despite the radical nature of these mutations, they do not appear to alter the pathway of folding. The interaction between Arg69 and Asp93, located in a relatively conserved region among ribonucleases, is predominantly formed in the major transition state along the folding pathway, as found previously from an analysis of more benign mutations; the value of phi(F) for all mutations at positions 69 and 93 are 0.8-0.9 in the major transition state for folding where phi(F) = 0 = fully unfolded and phi(F) = 1 = fully folded interaction energies). In contrast, the interaction between Arg83 and Asp75 in the active site of barnase is formed only in the native state of the protein. The analysis of folding pathways and the structure of folding intermediates by making kinetic and thermodynamic measurements on mutants appears even more robust than expected.
Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus exhibits half-of-the-sites reactivity and negative cooperativity in binding of tyrosine. Protein engineering has been applied to the enzyme to determine whether it can be reversibly dissociated into monomers and if the monomers are active. The target for mutation is the residue Phe-164. The side chain of Phe-164 in one subunit interacts with its symmetry-related partner in the other. Mutation of Phe-164----Asp-164 gives a mutant [TyrTS(Asp-164)] that undergoes dissociation at high pH when the aspartate residues are ionized. The monomer is inactive and does not bind tyrosine. Dissociation is enhanced at low concentrations of enzyme by a mass action effect. Kinetic and binding measurements on TyrTS(Asp-164) with tyrosine and tyrosyl adenylate show that the monomer has very weak affinity for these ligands. Accordingly, dimerization is favored by high concentrations of tyrosine and ATP since the dimeric form has a high affinity for the ligands. The presence of tRNA does not encourage dimer formation, and so it must bind to the monomer. TyrTS(Asp-164) is fully active at pH 6 where dimerization is favored but has low activity at pH 7.8 where dissociation is favored. It should now prove possible to engineer heterodimers that may be used to investigate the subunit interactions further.
We have analyzed the folding pathway of the tetramerization domain of the tumor suppressor protein p53. Structures of transition states were determined from phi-values for 25 mutations, including leucine to norvaline, and the analysis encompassed nearly every residue in the domain. Denatured monomers fold and dimerize, through a transition state with little native structure, to form a transient, highly structured dimeric intermediate. The intermediate dimerizes, through a native-like transition state with the primary dimers fully folded but with interdimer interactions only partially formed, to form the native tetramer as a 'dimer of dimers'.
Wild-type tyrosyl-tRNA synthetase (TyrTS) from Bacillus stearothermophilus is a symmetrical dimer. Four different heterodimeric enzymes have been produced by site-directed mutagenesis at the subunit interface so that the monomers are linked by a potential salt bridge in a hydrophobic environment. The two Phe-164 residues of wild-type TyrTS are on the axis of symmetry and interact in a hydrophobic region of the subunit interface. Mutation of Phe-164 to aspartate or glutamate in full-length TyrTS and to lysine or arginine in an active truncated enzyme (delta TyrTS) induces reversible dissociation of the enzyme into inactive monomers. Mixing mutants in equimolar amounts produces four different heterodimers: TyrTS(Asp-164)-delta TyrTS(Lys-164); TyrTS(Asp-164)-delta TyrTS(Arg-164); TyrTS(Glu-164)-delta TyrTS(Lys-164); TyrTS(Glu-164)-delta TyrTS(Arg-164). A general method is derived for analyzing the kinetics of dimeric enzymes that reversibly dissociate into inactive subunits. Application to mutants of TyrTS allows estimation of dissociation constants (Kd values) for the dimers. At pH 7.8, the heterodimers have Kd values of 6-14 microM, whereas for homodimers Kd = 120-4000 microM. These values decrease to about 30 microM for homodimers of TyrTS(Asp-164), TyrTS(Glu-164), and delta TyrTS(Lys-164) when the pH favors uncharged forms of the side chains at position 164. Each of the four salt bridges engineered into the hydrophobic subunit interface of TyrTS appears, therefore, to be weak. These engineered salt bridges may be compared with naturally occurring ones. In the latter, there are complementary interactions between the charges in the salt bridge with polar groups in the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.