Ferrociphenols are known to display anticancer properties by original mechanisms dependent on redox properties and generation of active metabolites such as quinone methides. Recent studies have highlighted the positive impact of oxidative stress on chemosensitivity and prognosis of ovarian cancer patients. Ovarian adenocarcinomas are shown to be an excellent model for defining the impact of selected ferrociphenols as new therapeutic drugs for such cancers. This work describes the syntheses and preliminary mechanistic research of unprecedented multitargeting heterocyclic ferrociphenols bearing either a succinimidyl or phthalimidyl group that show exceptional antiproliferative behavior against epithelial ovarian cancer cells resistant to cisplatin. Owing to the failure of the present pharmaceutical options, such as carboplatin a metallodrug based on Pt coordination chemistry, these species may help to overcome the problem of lethal resistance. Currently, ferrociphenolic entities generally operate via apoptotic and senescence pathways. We present here our first results in this new cyclic-imide series.
Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.