In vivo measurements of equivalent resistivities of skull (rho(skull)) and brain (rho(brain)) are performed for six subjects using an electric impedance tomography (EIT)-based method and realistic models for the head. The classical boundary element method (BEM) formulation for EIT is very time consuming. However, the application of the Sherman-Morrison formula reduces the computation time by a factor of 5. Using an optimal point distribution in the BEM model to optimize its accuracy, decreasing systematic errors of numerical origin, is important because cost functions are shallow. Results demonstrate that rho(skull)/rho(brain) is more likely to be within 20 and 50 rather than equal to the commonly accepted value of 80. The variation in rho(brain)(average = 301 omega x cm, SD = 13%) and rho(skull)(average = 12230 omega x cm, SD = 18%) is decreased by half, when compared with the results using the sphere model, showing that the correction for geometry errors is essential to obtain realistic estimations. However, a factor of 2.4 may still exist between values of rho(skull)/rho(brain) corresponding to different subjects. Earlier results show the necessity of calibrating rho(brain) and rho(skull) by measuring them in vivo for each subject, in order to decrease errors associated with the electroencephalogram inverse problem. We show that the proposed method is suited to this goal.
The general spatiotemporal covariance matrix of the background noise in MEG/EEG signals is huge. To reduce the dimensionality of this matrix it is modeled as a Kronecker product of a spatial and a temporal covariance matrix. When the number of time samples is larger than, say, J ϭ 500, the iterative Maximum Likelihood estimation of these two matrices is still too time-consuming to be useful on a routine basis. In this study we looked for methods to circumvent this computationally expensive procedure by using a parametric model with subject-dependent parameters. Such a model would additionally help with interpreting MEG/EEG signals. For the spatial covariance, models have been derived already and it has been shown that measured MEG/EEG signals can be understood spatially as random processes, generated by random dipoles. The temporal covariance, however, has not been modeled yet, therefore we studied the temporal covariance matrix in several subjects. For all subjects the temporal covariance shows an alpha oscillation and vanishes for large time lag. This gives rise to a temporal noise model consisting of two components: alpha activity and additional random noise. The alpha activity is modeled as randomly occurring waves with random phase and the covariance of the additional noise decreases exponentially with lag. This model requires only six parameters instead of 1 2 J(J ϩ 1). Theoretically, this model is stationary but in practice the stationarity of the matrix is highly influenced by the baseline correction. It appears that very good agreement between the data and the parametric model can be obtained when the baseline correction window is taken into account properly. This finding implies that the background noise is in principle a stationary process and that nonstationarities are mainly caused by the nature of the preprocessing method. When analyzing events at a fixed sample after the stimulus (e.g., the SEF N20 response) one can take advantage of this nonstationarity by optimizing the baseline window to obtain a low noise variance at this particular sample.
Abstract-The standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is derived for the case that the recorded data contain amplitude variations. The estimator accounts for spatially and temporally correlated background noise that is superimposed on the brain response.The model is applied to a series of 17 MEG data sets of normal subjects, obtained during median nerve stimulation. It appears that the amplitude of late component (30-120 ms) shows a systematic negative trend indicating a weakening response during stimulation time. For the early components (20-35 ms) no such a systematic effect was found. The model is furthermore applied on a MEG data set consisting of epileptic spikes of constant spatial distribution but varying polarity. For these data, the advantage of applying the model is that positive and negative spikes can be processed with a single model, thereby reducing the number of degrees of freedom and increasing the signal-to-noise ratio.
The single Kronecker product (KP) model for the spatiotemporal covariance of MEG residuals is extended to a sum of Kronecker products. This sum of KP is estimated such that it approximates the spatiotemporal sample covariance best in matrix norm. Contrary to the single KP, this extension allows for describing multiple, independent phenomena in the ongoing background activity. Whereas the single KP model can be interpreted by assuming that background activity is generated by randomly distributed dipoles with certain spatial and temporal characteristics, the sum model can be physiologically interpreted by assuming a composite of such processes. Taking enough terms into account, the spatiotemporal sample covariance matrix can be described exactly by this extended model.In the estimation of the sum of KP model, it appears that the sum of the first 2 KP describes between 67% and 93%. Moreover, these first two terms describe two physiological processes in the background activity: focal, frequency-specific alpha activity, and more widespread non-frequency-specific activity. Furthermore, temporal nonstationarities due to trial-to-trial variations are not clearly visible in the first two terms, and, hence, play only a minor role in the sample covariance matrix in terms of matrix power. Considering the dipole localization, the single KP model appears to describe around 80% of the noise and seems therefore adequate. The emphasis of further improvement of localization accuracy should be on improving the source model rather than the covariance model. D
The clustering coefficient is typically used as a measure of the prevalence of node clusters in a network. Various definitions for this measure have been proposed for the cases of networks having weighted edges which may or not be directed. However, these techniques consistently assume that only a subset of all possible edges is present in the network, whereas there are weighted networks of interest in which all possible edges are present, that is, complete weighted networks. For this situation, the concept of clustering is redefined, and computational techniques are presented for computing an associated clustering coefficient for complete weighted undirected or directed networks. The performance of this new definition is compared with that of current clustering definitions when extended to complete weighted networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.