Reversibility is a common theme in respiratory and photosynthetic systems that couple electron transfer with a transmembrane proton gradient driving ATP production. This includes the intensely studied cytochrome bc1, which catalyses electron transfer between quinone and cytochrome c. To understand how efficient reversible energy coupling works, here we have progressively inactivated individual cofactors comprising cytochrome bc1. We have resolved millisecond reversibility in all electron-tunnelling steps and coupled proton exchanges, including charge-separating hydroquinone-quinone catalysis at the Q(o) site, which shows that redox equilibria are relevant on a catalytic timescale. Such rapid reversibility renders popular models based on a semiquinone in Q(o) site catalysis prone to short-circuit failure. Two mechanisms allow reversible function and safely relegate short-circuits to long-distance electron tunnelling on a timescale of seconds: conformational gating of semiquinone for both forward and reverse electron transfer, or concerted two-electron quinone redox chemistry that avoids the semiquinone intermediate altogether.
The ubiquinone complement of Rhodobacter capsulatus chromatophore membranes has been characterized by its isooctane solvent extractability and electrochemistry; we find that the main ubiquinone pool (Qpool) amounts to about 80% of the total ubiquinone and has an Em7 value close to 90 mV. To investigate the interactions of ubiquinone with the cyt bc1 complex, we have examined the distinctive EPR line shapes of the [2Fe-2S] cluster of the cyt bc1 complex when the Qpool-cyt bc1 complex interactions are modulated by changing the numbers of Q or QH2 present (by solvent extraction and reconstitution), by the exposure of the [2Fe-2S] to the Qpool in different redox states, by the presence of inhibitors specific for the Qo site (myxothiazol and stigmatellin) and Qi site (antimycin), and by site-specific mutations of side chains of the cyt b polypeptide (mutants F144L and F144G) previously identified as important for Qo site structure. Evidence suggests that the Qo site can accommodate two ubiquinone molecules. One (designated Qos) is bound relatively strongly and is second only to the ubiquinone of the QA site of the reaction center in its resistance to solvent extraction. In this strong interaction, the Qo site binds Q and QH2 with approximately equal affinities. Their bound states are distinguished by their effects on the [2Fe-2S] cluster spectral feature at gx at 1.783 (Q) and gx at 1.777 (QH2); titration of the line-shape change reveals an Em7 value of approximately 95 mV. The other molecule (Qow) is bound more weakly, in the same range as the ubiquinone of the QB site of the reaction center. Again, the affinities of the Q form (gx at 1.800) and QH2 form (gx at 1.777) are nearly equal, and the Em7 value measured is approximately 80 mV. These results are discussed in terms of earlier EPR analyses of the cyt bc1 complexes of other systems. A Qo site double-occupancy model is considered that builds on the previous model based on Qo site mutants [Robertson, D. E., Daldal, F.,& Dutton, P. L. (1990) Biochemistry 29, 11249-11260] and includes the recent suggestion that two of the [2F3-2S] cluster ligands of the R. capsulatus cyt bc1 complex are histidines [Gurbiel, R. J. Ohnishi, T., Robertson, D. E. Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. We speculate that the cyt bc1 complex complexes a full enzymatic turnover without necessary exchange of ubiquinone with the Qpool.
The mechanistic heart of the ubihydroquinone-cytochrome c oxidoreductase (cyt bc1 complex) is the catalytic oxidation of ubihydroquinone (QH2) at the Qo site. QH2 oxidation is initiated by ferri-cyt c, mediated by the cyt c1 and [2Fe-2S] cluster of the cytochrome bc1 complex. QH2 oxidation in turn drives transmembrane electronic charge separation through two b-type hemes to another ubiquinone (Q) at the Qi site. In earlier studies, residues F144 and G158 of the b-heme containing polypeptide of the Rhodobacter capsulatus cyt bc1 complex were shown to be influential in Qo site function. In the present study, F144 and G158 have each been singly substituted by neutral residues and the dissociation constants measured for both Q and QH2 at each of the strong and weak binding Qo site domains (Qos and Qow). Various substitutions at F144 or G158 were found to weaken the affinities for Q and QH2 at both the Qos and Qow domains variably from zero to beyond 10(3)-fold. This produced a family of Qo sites with Qos and Qow domain occupancies ranging from nearly full to nearly empty at the prevailing approximately 3 x 10(-2) M concentration of the membrane ubiquinone pool (Qpool). In each mutant, the affinity of the Qos domain remained typically 10-20-fold higher than that of the Qow domain, as is found for wild type, thereby indicating that the single mutations caused comparable extents of the weakening at each domain. Moreover, the substitutions were found to cause similar decreases of the affinities of both Q and QH2 in each domain, thereby maintaining the Q/QH2 redox midpoint potentials (Em7) of the Qo site at values similar to that of the wild type. Measurement of the yield and rate of QH2 oxidation generated by single turnover flashes in the family of mutants suggests that the Qos and Qow domains serve different roles for the catalytic process. The yield of the QH2 oxidation correlates linearly with Qos domain occupancy (QH2 or Q), suggesting that the Qos domain exchanges Q or QH2 with the Qpool at a rate which is much slower than the time scale of turnover.(ABSTRACT TRUNCATED AT 400 WORDS)
Atovaquone represents a class of antimicrobial agents with a broad‐spectrum activity against various parasitic infections, including malaria, toxoplasmosis and Pneumocystis pneumonia. In malaria parasites, atovaquone inhibits mitochondrial electron transport at the level of the cytochrome bc1 complex and collapses mitochondrial membrane potential. In addition, this drug is unique in being selectively toxic to parasite mitochondria without affecting the host mitochondrial functions. A better understanding of the structural basis for the selective toxicity of atovaquone could help in designing drugs against infections caused by mitochondria‐containing parasites. To that end, we derived nine independent atovaquone‐resistant malaria parasite lines by suboptimal treatment of mice infected with Plasmodium yoelii; these mutants exhibited resistance to atovaquone‐mediated collapse of mitochondrial membrane potential as well as inhibition of electron transport. The mutants were also resistant to the synergistic effects of atovaquone/ proguanil combination. Sequencing of the mitochondrially encoded cytochrome b gene placed these mutants into four categories, three with single amino acid changes and one with two adjacent amino acid changes. Of the 12 nucleotide changes seen in the nine independently derived mutants 11 replaced A:T basepairs with G:C basepairs, possibly because of reactive oxygen species resulting from atovaquone treatment. Visualization of the resistance‐conferring amino acid positions on the recently solved crystal structure of the vertebrate cytochrome bc1 complex revealed a discrete cavity in which subtle variations in hydrophobicity and volume of the amino acid side‐chains may determine atovaquone‐binding affinity, and thereby selective toxicity. These structural insights may prove useful in designing agents that selectively affect cytochrome bc1 functions in a wide range of eukaryotic pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.