Increasing chemotherapy delivery to tumors, while enhancing drug uptake and reducing side effects, is a primary goal of cancer research. In mouse and human cancer models in vivo, we show that coadministration of low-dose Cilengitide and Verapamil increases tumor angiogenesis, leakiness, blood flow, and Gemcitabine delivery. This approach reduces tumor growth, metastasis, and minimizes side effects while extending survival. At a molecular level, this strategy alters Gemcitabine transporter and metabolizing enzyme expression levels, enhancing the potency of Gemcitabine within tumor cells in vivo and in vitro. Thus, the dual action of low-dose Cilengitide, in vessels and tumor cells, improves chemotherapy efficacy. Overall, our data demonstrate that vascular promotion therapy is a means to improve cancer treatment.
Chemoresistance is a serious limitation of cancer treatment1. Until recently, almost all the work done to study this limitation has been restricted to tumour cells2. Here we identify a novel molecular mechanism by which endothelial cells regulate chemosensitivity. We establish that specific targeting of focal adhesion kinase (FAK; also known as PTK2) in endothelial cells is sufficient to induce tumour-cell sensitization to DNA-damaging therapies and thus inhibit tumour growth in mice. The clinical relevance of this work is supported by our observations that low blood vessel FAK expression is associated with complete remission in human lymphoma. Our study shows that deletion of FAK in endothelial cells has no apparent effect on blood vessel function per se, but induces increased apoptosis and decreased proliferation within perivascular tumour-cell compartments of doxorubicin- and radiotherapy-treated mice. Mechanistically, we demonstrate that endothelial-cell FAK is required for DNA-damage-induced NF-κB activation in vivo and in vitro, and the production of cytokines from endothelial cells. Moreover, loss of endothelial-cell FAK reduces DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumour cells to DNA-damaging therapies in vitro and in vivo. Overall, our data identify endothelial-cell FAK as a regulator of tumour chemosensitivity. Furthermore, we anticipate that this proof-of-principle data will be a starting point for the development of new possible strategies to regulate chemosensitization by targeting endothelial-cell FAK specifically.
Emerging evidence suggests that cancer cell metabolism can be regulated by cancerassociated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.
The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.