The main topic in this article is to define and examine new sequence spaces bs(F(s, r)) and cs(F(s, r))), whereF(s, r) is generalized difference Fibonacci matrix in which s, r ∈ R\ {0}. Some algebric properties including some inclusion relations, linearly isomorphism and norms defined over them are given. In addition, it is shown that they are Banach spaces. Finally, the α-, β-and γ-duals of the spaces bs(F(s, r)) and cs(F(s, r)) are appointed and some matrix transformations of them are given.
In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α, β, γduals, and characterized their matrix transformations on this space and into this space.
Matrix F̂ derived from the Fibonacci sequence was first introduced by Kara (2013) and the spaces lp(F) and l∞(F); (1 ≤ p < ∞) were examined. Then, Başarır et al. (2015) defined the spaces c0(F) and c(F) and Candan (2015) examined the spaces c(F(r,s)) and c0(F(r,s)). Later, Yaşar and Kayaduman (2018) defined and studied the spaces cs(F(s,r)) and bs(F(s,r)). In this study, we built the spaces cs(F) and bs(F). They are the domain of the matrix F on cs and bs, where F is a triangular matrix defined by Fibonacci Numbers. Some topological and algebraic properties, isomorphism, inclusion relations and norms, which are defined over them are examined. It is proven that cs(F) and bs(F) are Banach spaces. It is determined that they have the γ, β, α -duals. In addition, the Schauder base of the space cs(F) are calculated. Finally, a number of matrix transformations of these spaces are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.