Metabotropic glutamate (mGlu) receptors have been implicated in a number of physiological and pathological responses to glutamate, but the exact role of group I mGlu receptors in causing postischaemic injury is not yet clear. In this study, we examined whether the recently-characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) could reduce neuronal death in vitro, following oxygen-glucose deprivation (OGD) in murine cortical cell and rat organotypic hippocampal cultures, and in vivo, after global ischaemia in gerbils. When present in the incubation medium during the OGD insult and the subsequent 24 h recovery period, AIDA and CBPG significantly reduced neuronal death in vitro. The extent of protection was similar to that observed with the nonselective mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine [(+)MCPG] and with typical ionotropic glutamate (iGlu) receptor antagonists. Neuroprotection was also observed when AIDA or CBPG were added only after the OGD insult was terminated. Neuronal injury was not attenuated by the inactive isomer (-)MCPG, but was significantly enhanced by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid [(1S,3R)-ACPD] and the group I mGlu receptor agonist 3,5-dihydroxyphenylglycine (3,5-DHPG). The antagonists (+)MCPG, AIDA and CBPG were also neuroprotective in vivo, because i. c.v. administration reduced CA1 pyramidal cell degeneration examined 7 days following transient carotid occlusion in gerbils. Our results point to a role of mGlu1 receptors in the pathological mechanisms responsible for postischaemic neuronal death and propose a new target for neuroprotection.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in postischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type. Cell Death and Differentiation (2001) 8, 921 ± 932.
Anatomical, biochemical and electrophysiological studies have previously shown that cortico-striatal terminals contain abundant presynaptic group 2 metabotropic glutamate (mGlu) receptors. Using brain slices we have previously shown that these receptors inhibit depolarization-induced transmitter release. Using microdialysis in freely moving rats, we now report the effects of group 2 mGlu receptor agonists and antagonists on glutamate concentration in the caudate extracellular fluid. A mild decrease (20-30%) in glutamate concentration in caudate dialysates was observed when 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid or (2S,3S,4S)-alpha-carboxycyclopropyl-glycine (L-CCG-1), mGlu receptor agonists, was locally administered. On the contrary, alpha-methyl-4-carboxyphenylglycine, an antagonist of type 1 and type 2 mGlu receptors, increased the glutamate concentration in dialysates by up to 3.5-fold, and its effects were prevented by the simultaneous administration of L-CCG-1, a preferential type 2 mGlu receptor agonist. A significant increase of glutamate output in striatal dialysate was also found after local administration of (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, another structurally unrelated, relatively selective and potent type 2 mGlu receptor antagonist. The results suggest that type 2 mGlu receptors tonically inhibit transmitter release from cortico-striatal terminals. Since the cortico-striatal pathway profoundly affects the function of a large percentage of caudate neurons, it is reasonable to predict that the use of selective type 2 mGlu receptor agents will be helpful for scientific and therapeutic studies on the physiopathology of basal ganglion disorders.
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 lM) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 lM) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nM and was too low to efficiently interact with a7 nicotinic acetylcholine receptors or with the glycine b site of N-methyl-D-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 lM) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.