Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving nonbiomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils.
Reconstructing the feeding ecology of fossil fishes can be difficult, but new mechanical approaches enable reasonably reliable inferences by comparison with living forms. Here, the feeding ecology of one of the most iconic and abundant actinopterygians of the Early Jurassic, Dapedium, is explored through detailed anatomical study and functional analyses of jaw mechanics. Mathematical models derived from modern teleost functional morphology are applied, to ascertain the transmission of force through the jaws of Dapedium. A number of features not previously identified in the genus are described, and the dentition is described in full for the first time. The analysis of the functional morphology of Dapedium, in combination with its jaw anatomy and dentition, indicates that the genus was well adapted to a durophagous feeding habit, although indirect evidence suggests a more generalist feeding mode.Being a generalist durophage may explain the success of the genus in the aftermath of the end-Triassic extinction event and its radiation in the Early Jurassic, as indicated by the ubiquity of Dapedium fossils throughout the Lower Lias.
Some of the most varied colors in the natural world are created by iridescent nanostructures in bird feathers, formed by layers of melanin‐containing melanosomes. The morphology of melanosomes in iridescent feathers is known to vary, but the extent of this diversity, and when it evolved, is unknown. We use scanning electron microscopy to quantify the diversity of melanosome morphology in iridescent feathers from 97 extant bird species, covering 11 orders. In addition, we assess melanosome morphology in two Eocene birds, which are the stem lineages of groups that respectively exhibit hollow and flat melanosomes today. We find that iridescent feathers contain the most varied melanosome morphologies of all types of bird coloration sampled to date. Using our extended dataset, we predict iridescence in an early Eocene trogon (cf. Primotrogon ) but not in the early Eocene swift Scaniacypselus , and neither exhibit the derived melanosome morphologies seen in their modern relatives. Our findings confirm that iridescence is a labile trait that has evolved convergently in several lineages extending down to paravian theropods. The dataset provides a framework to detect iridescence with more confidence in fossil taxa based on melanosome morphology.
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.
Non-iridescent structural colour in avian feathers is produced by coherent light scattering through quasi-ordered nanocavities in the keratin cortex of the barbs. To absorb unscattered light, melanosomes form a basal layer underneath the nanocavities. It has been shown that throughout Aves, melanosome morphology reflects broad categories of melanin-based coloration, as well as iridescence, allowing identification of palaeocolours in exceptionally preserved fossils. However, no studies have yet investigated the morphology of melanosomes in non-iridescent structural colour. Here, we analyse a wide sample of melanosomes from feathers that express non-iridescent structural colour from a phylogenetically broad range of extant avians to describe their morphology and compare them with other avian melanosome categories. We find that investigated melanosomes are typically wide (approx. 300 nm) and long (approx. 1400 nm), distinct from melanosomes found in black, brown and iridescent feathers, but overlapping significantly with melanosomes from grey feathers. This may suggest a developmental, and perhaps evolutionary, relationship between grey coloration and non-iridescent structural colours. We show that through analyses of fossil melanosomes, melanosomes indicative of non-iridescent structural colour can be predicted in an Eocene stem group roller ( Eocoracias : Coraciiformes) and with phylogenetic comparative methods the likely hue can be surmised. The overlap between melanosomes from grey and non-iridescent structurally coloured feathers complicates their distinction in fossil samples where keratin does not preserve. However, the abundance of grey coloration relative to non-iridescent structural coloration makes the former a more likely occurrence except in phylogenetically bracketed specimens like the specimen of Eocoracias studied here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.