Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments.
Visual crowdsensing applications using built-in cameras in smartphones have recently attracted researchers’ interest. Making the most out of the limited resources to acquire the most helpful images from the public is a challenge in disaster recovery applications. Proposed solutions should adequately address several constraints, including limited bandwidth, limited energy resources, and interrupted communication links with the command center or server. Furthermore, data redundancy is considered one of the main challenges in visual crowdsensing. In distributed visual crowdsensing systems, photo sharing duplicates and expands the amount of data stored on each sensor node. As a result, if any node can communicate with the server, then more photos of the target region would be available to the server. Methods for recognizing and removing redundant data provide a range of benefits, including decreased transmission costs and energy consumption overall. To handle the interrupted communication with the server and the restricted resources of the sensor nodes, this paper proposes a distributed visual crowdsensing system for full-view area coverage. The target area is divided into virtual sub-regions, each of which is represented by a set of boundary points of interest. Then, based on the criteria for full-view area coverage, a specific data structure theme is developed to represent each photo with a set of features. The geometric context parameters of each photo are utilized to extract the features of each photo based on the full-view area coverage criteria. Finally, data redundancy removal algorithms are implemented based on the proposed clustering scheme to eliminate duplicate photos. As a result, each sensor node may filter redundant photographs in dispersed contexts without requiring high computational complexity, resources, or global awareness of all photos from all sensor nodes inside the target area. Compared to the most recent state-of-the-art, the improvement ratio of the added values of the photos provided by the proposed method is more than 38%. In terms of traffic transfer, the proposed method requires fewer data to be transferred between sensor nodes and between sensor nodes and the command center. The overall reduction in traffic exceeds 20% and the overall savings in energy consumption is more than 25%. It was evident that in the proposed system, sending photos between sensor nodes, as well as between sensor nodes and the command center, consumes less energy than existing approaches due to the considerable amount of photo exchange required. Thus, the proposed technique effectively transfers only the most valuable photos needed.
In this paper, an adaptive path construction approach for Mobile Sink (MS) in wireless sensor networks (WSNs) for data gathering has been proposed. The path is constructed based on selecting Rendezvous Points (RPs) in the sensing field where the MS stops in order to collect the data. Compared with the most existing RP-based schemes, which rely on fixed RPs to construct the path where these points will stay fixed during the whole network lifetime, we propose an adaptive path construction where the locations of the RPs are dynamically updated using a Fuzzy Inference System (FIS). The proposed FIS, which is named Fuzzy_RPs, has three inputs and one output. The inputs are: the remaining energy of the sensor nodes, the transmission distance between the RPs and the sensor nodes, and the number of surrounding neighbors of each node. The output of FIS is a weight value for each sensor node generated based on the previous three parameters and, thus, each RP is updated to its new location accordingly. Simulation results have shown that the proposed approach extends the network lifetime compared with another existing approach that uses fixed RPs. For example, in terms of using the first dead node as a metric for the network lifetime, when the number of deployed sensor nodes changes from 150 to 300, an improvement that ranges from 48.3% to 83.76% has been achieved compared with another related approach that uses fixed RPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.