Culex quinquefasciatus Say (Diptera: Culicidae), an arboviral and filarial vector, is one of the most widespread mosquitoes in the world. The indiscriminate use of synthetic chemical insecticides has led to the development of resistance in mosquito populations worldwide. The effect of continuous exposure to crude extracts of Argemone mexicana, the Mexican poppy, on the development and growth stages of second-instar larvae of the mosquito was studied, along with qualitative chemical analysis of the different plant parts. Inhibition, mortality, and larval and pupal duration phases were assessed. Second-instar mosquito larvae were exposed to crude ethanol extracts of flowers, stems, and seeds. Flower extract exhibited the strongest larvicidal activity with LC50 and LC90 values after 24 h of exposure of 18.61 and 39.86 ppm, respectively, and 9.47 and 21.76 ppm after 48 h. Extracts from stem and seeds were significantly less effective. The flower extract registered a Growth Inhibition Index of 0.01 at 25 ppm, with stems and seeds registering 0.05 and 0.08, respectively, at 100 ppm (control group 1.02). Qualitative chemical analysis by thin-layer chromatography showed characteristic spots indicating the presence of alkaloids and flavonoids and phytochemical screening showed the presence of alkaloids, anthraquinones, flavonoids, tannins, and terpenoids in the various crude extracts. This is the first report of the effectiveness of an ethanol flower extract of A. mexicana on Cx. quinquefasciatus; it can be considered a promising alternative control for this mosquito species.
The black soldier fly, Hermetia illucens (BSF, Diptera: Stratiomyidae) is an insect with high protein value and a potential feed agent for animals aimed for human consumption. The growth parameters of BSF larvae reared on four substrates—restaurant-waste, fruit-waste, fish-waste, and commercial tilapia food—for 41 days before processing for inclusion into Oreochromis niloticus (Perciformes: Cichlidae, Nile tilapia) commercial fry diets at 30% (70:30) were determined. On fly larvae, the food substrate based on restaurant waste yielded the greatest larval weight and length. BSF larvae fed a fish-waste diet showed the shortest developmental time. The fruit-waste diet induced the lowest weight and length in the fly larvae/pre-pupae (immature stage). The pre-pupal protein values were similar to commercial food. On fry-fish, the diets with pre-pupae grown on fish waste showed the greatest yields regarding weight (biomass), length, and nutritional content. These results suggest the BSF has the potential to be used in fish feed and provides an alternative for commercial cultivation.
The insecticidal and repellent effect of essential oil isolated from fresh leaves of Porophyllum linaria on maize weevil was evaluated, as well as the effect on the grain germination after treated. In total, 28 constituents were identified by gas chromatography coupled with mass spectrometry accounting for 99.86% of whole essential oil. The main majority compounds were β-myrcene (41.94%), D-limonene (20.29%), and estragole (20.03%). Contact toxicity significantly increased with dose and time after treatment. With the 800 ppm (highest concentration), the mortality (%) obtained for the tenth and fifteenth day was 43 and 82%, respectively, whereas with 50 ppm (lowest concentration) 30% mortality was obtained at the end of the experiment (fifteenth day). At 15 d (end of the experiment), the LC50 y LC90 were obtained with values of 329.01 ± 44.35 y 1058.86 ± 117.76 ppm, respectively. For a concentration of 800 ppm, a selection index of zero was obtained, indicating the preference of the pest to the untreated maize (control). The maize grains germination test showed a significant reduction both in the length of hypocotyl and radicle of maize grain. So, in the highest dose, the hypocotyl and radicle length was 1.40 ± 0.34 and 9.14 ± 0.55 cm, respectively, whereas the control group registered 3.28 ± 0.39 and 13.02 ± 0.97 cm, respectively. This finding is promising since as it could result in the identification of botanical substances capable of suppressing maize weevil, Sitophilus zeamais development.
The Green Revolution led to an increased use of synthetic pesticides, causing environmental pollution. As an alternative, biopesticides made from entomopathogenic agents such as fungi have been sought. This study aimed to design and evaluate the performance of a harvester machine for efficiently collecting entomopathogenic spores of Metarhizium anisopliae and Beauveria bassiana grown on rice and corn substrates. The spore yield was estimated, and a spore count and a colony-forming unit (CFU) count were performed. Statistical analysis was conducted to compare the mean values of spores obtained from different combinations of solid substrate and fungi. The Corn-Metarhizium combination produced 34.15 g of spores per kg of substrate and 1.51 × 109 CFUs mL−1. Similarly, the Rice-Metarhizium combination produced 57.35 g per kg and 1.59 × 109 CFUs mL−1. Meanwhile, the Corn-Beauveria combination yielded 35.47 g per kg and 1.00 × 109 CFUs mL−1, while the Rice-Beauveria combination had a yield of 38.26 g per kg and 4.50 × 108 CFUs mL−1. Based on the reported results, the Rice-Metarhizium combination appears to be the most effective, yielding the highest number of harvested spores per kg of substrate. The study estimated a total cost of approximately $409.31 for manufacturing the harvester, considering only the cost of the materials. These results could potentially increase the availability and affordability of entomopathogenic fungi in integrated pest management.
HighlightsOrganic cropping systems were less efficient in energy use.Sugarcane for seed was the highest energy input due to the consumption of 12 t ha-1 of seed.The second largest part of the energy input was the fuel consumed during mechanized operations.Abstract.Analysis of energy use efficiency provides an assessment of non-renewable energy consumption; it is a useful indicator of environmental and long-term sustainability when comparing cropping systems. This study aimed to estimate the energy use efficiency of organic and conventional cropping systems of sugarcane for sugar production in central Cuba. Estimation of the energy use efficiency included analysis of four cropping systems. The energy input in the field until harvest and transport to the sugar mill was the limit of this analysis. The results showed that organic cropping systems were less efficient in energy use because of the greater number of field operations, mainly for weed control by manual and mechanical cultivation. Organic cropping systems also had lower yield compared with conventional systems due to their use of low doses of organic products, instead of agrochemical fertilizers, for plant nutrition. In all cropping systems evaluated, sugarcane used for seed was the largest part of the energy input due to the consumption of 12 t ha-1 of seed, representing an average of 89% of the total energy input for the sugarcane cropping systems. The second largest part of the energy input was the fuel consumed during mechanized operations. Irrigation was the third largest part of the energy input for organic cropping systems and the second largest part of the energy input for conventional cropping systems. Keywords: Agricultural systems, Energy balance, Energy input, Energy output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.