The cylcop package extends the copula package to allow modeling of correlated circular-linear random variables using copulae that are symmetric in the circular dimension. We present and derive several new circular-linear copulae with this property and demonstrate how they can be implemented in the cylcop package to model animal movements in discrete time. The package contains methods for estimating copulae parameters, plotting probability density and cumulative distribution functions, and simulating data.
1. Animal movement is often modeled in discrete time, formulated in terms of steps taken between successive locations at regular time intervals. Steps are characterized by the distance between successive locations (step-lengths) and changes in direction (turn angles). Animals commonly exhibit a mix of directed movements with large step lengths and turn angles near 0 when traveling between habitat patches and more wandering movements with small step lengths and uniform turn angles when foraging. Thus, step-lengths and turn angles will typically be cross-correlated. 2. Most models of animal movement assume that step-lengths and turn angles are independent, likely due to a lack of available alternatives. Here, we show how the method of copulae can be used to fit multivariate distributions that allow for correlated step lengths and turn angles. 3. We describe several newly developed copulae appropriate for modeling animal movement data and fit these distributions to data collected on fishers (Pekania pennanti). The copulae are able to capture the inherent correlation in the data and provide a better fit than a model that assumes independence. Further, we demonstrate via simulation that this correlation can impact movement patterns (e.g. rates of dispersion overtime). 4. We see many opportunities to extend this framework (e.g. to consider autocorrelation in step attributes) and to integrate it into existing frameworks for modeling animal movement and habitat selection. For example, copula could be used to more accurately sample available locations when conducting habitat-selection analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.