The main goal in pattern recognition is to be able to recognize interest patterns, although these patterns might be altered in some way. Associative memories is a branch in AI that obtains one generalization per class from the initial data set. The main problem is that when generalization is performed much information is lost. This is mainly due to the presence of outliers and pattern distribution in space. It is believed that one generalization is not sufficient to keep the information necessary to achieve a good performance in the recall phase. This paper shows a way to prevent information loss and make more significative learning allowing better recalling results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.