It is common, when dealing with quantum processes involving a subsystem of a much larger composite closed system, to treat them as effectively memory-less (Markovian). While open systems theory tells us that non-Markovian processes should be the norm, the ubiquity of Markovian processes is undeniable. Here, without resorting to the Born-Markov assumption of weak coupling or making any approximations, we formally prove that processes are close to Markovian ones, when the subsystem is sufficiently small compared to the remainder of the composite, with a probability that tends to unity exponentially in the size of the latter. We also show that, for a fixed global system size, it may not be possible to neglect non-Markovian effects when the process is allowed to continue for long enough. However, detecting non-Markovianity for such processes would usually require non-trivial entangling resources. Our results have foundational importance, as they give birth to almost Markovian processes from composite closed dynamics, and to obtain them we introduce a new notion of equilibration that is far stronger than the conventional one and show that this stronger equilibration is attained.
Memoryless processes are ubiquitous in nature, in contrast with the mathematics of open systems theory, which states that non-Markovian processes should be the norm. This discrepancy is usually addressed by subjectively making the environment forgetful. Here we prove that there are physical non-Markovian processes that with high probability look highly Markovian for all orders of correlations; we call this phenomenon Markovianization. Formally, we show that when a quantum process has dynamics given by an approximate unitary design, a large deviation bound on the size of non-Markovian memory is implied. We exemplify our result employing an efficient construction of an approximate unitary circuit design using two-qubit interactions only, showing how seemingly simple systems can speedily become forgetful. Conversely, since the process is closed, it should be possible to detect the underlying non-Markovian effects. However, for these processes, observing non-Markovian signatures would require highly entangling resources and hence be a difficult task.
The rapid progress in the development of quantum devices is in large part due to the availability of a wide range of characterization techniques allowing to probe, test and adjust them. Nevertheless, these methods often make use of approximations that hold in rather simplistic circumstances. In particular, assuming that error mechanisms stay constant in time and have no dependence in the past, is something that will be impossible to do as quantum processors continue scaling up in depth and size. We establish a theoretical framework for the Randomized Benchmarking protocol encompassing temporally-correlated, so-called non-Markovian noise, at the gate level, for any gate set belonging to a wide class of finite groups. We obtain a general expression for the Average Sequence Fidelity (ASF) and propose a way to obtain average gate fidelities of full non-Markovian noise processes. Moreover, we obtain conditions that are fulfilled when an ASF displays authentic non-Markovian deviations. Finally, we show that even though gate-dependence does not translate into a perturbative term within the ASF, as in the Markovian case, the non-Markovian sequence fidelity nevertheless remains stable under small gate-dependent perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.