The use of smart meter in electric power consumption plays great roll benefiting customer to control and manage their electric power usage. It creates smooth communication to build fair electric power distribution for customers and better management of whole electric system for suppliers. Machine learning predictive frameworks have been worked in order to utilize the electric energy assets effectively, productively and acknowledgment of advanced energy generation, circulation and utilization. This paper presents outline of research works identified with machine learning based forecasting of customers electric power utilization from smart meter data. The paper concentrates on exhaustive study of strategies and relative examination of classifier models utilized as a part of determining customer electric power consumption. Moreover, limitations, difficulties, points of interest and disadvantage of the past works identified with machine learning based methods determining of customers electric power consumption are over viewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.