An efficient silicon-based light source presents an unreached goal in the field of photonics, due to Silicon's indirect electronic band structure preventing direct carrier recombination and subsequent photon emission. Here we utilize inelastically tunneling electrons to demonstrate an electrically-driven light emitting silicon-based tunnel junction operating at room temperature. We show that such a junction is a source for plasmons driven by the electrical tunnel current. We find that the emission spectrum is not given by the quantum condition where the emission frequency would be proportional to the applied voltage, but the spectrum is determined by the spectral overlap between the energy-dependent tunnel current and the modal dispersion of the plasmon. Experimentally we find the highest light outcoupling efficiency corresponding to the skin-depth of the metallic contact of this metalinsulator-semiconductor junction. Distinct from LEDs, the temporal response of this tunnel source is not governed by nanosecond carrier lifetimes known to semiconductors, but rather by the tunnel event itself and Heisenberg's uncertainty principle.
Highly accurate closed-form analytical formula, based on the undepleted pump approximation (UPA), is derived for pump, Stokes and the gain of a Brillouin fiber amplifier (BFA) operating in the moderately depleted pump regime. The material loss of the medium, which is a strong effect in optical fibers, is taken into account.To define validity ranges of the solution, the threshold power of BFA is accurately determined. The obtained results are numerically and experimentally validated. The presented analysis can be used to accurately predict the performance of moderate-gain BFAs.
Abstract:We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic MasterOscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10µm-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of µJ. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics.
We report on an accurate closed-form analytical model for the gain of a Brillouin fiber amplifier that accounts for material loss in the depleted pump regime. We determined the operational model limits with respect to its relevant parameters and pump regimes through both numerical and experimental validation. As such, our results enable accurate performance prediction of Brillouin fiber amplifiers operating in the weak-pump, high-gain, and saturation regimes alike.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.