Epilepsy is a disease that attacks the nerves. To detect epilepsy, it is necessary to analyze the results of an EEG test. In this study, we compared the naive bayes, random tree forest and K-nearest neighbor (KNN) classification algorithms to detect epilepsy. The raw EEG data were pre-processed before doing feature extraction. Then, we have done the training in three algorithms: KNN Classification, naïve bayes classification and random tree forest. The last step was validation of the trained machine learning. Comparing those three classifiers, we calculated accuracy, sensitivity, specificity, and precision. The best trained classifier is KNN classifier (accuracy: 92.7%), rather than random tree forest (accuracy: 86.6%) and naïve bayes classifier (accuracy: 55.6%). Seen from precision performance, KNN Classification also gives the best precision (82.5%) rather than Naïve Bayes classification (25.3%) and random tree forest (68.2%). But, for the sensitivity, Naïve Bayes classification is the best with 80.3% sensitivity, compare to KNN 73.2% and random tree forest (42.2%). For specificity, KNN classification gives 96.7% specificity, then random tree forest 95.9% and Naïve bayes 50.4%. The training time of naïve bayes was 0.166030 sec, while training time of random tree forest was 2.4094sec and KNN was the slower in training that was 4.789 sec. Therefore, KNN Classification gives better performance than naïve bayes and random tree forest classification.
pada bungkus rokok telah dilakukan bertahun-tahun di Indonesia. Akan tetapi, jumlah perokok di Indonesia tidak mengalami penurunan yang menggembirakan. Berbagai studi terkait persepsi perokok terhadap Gambar Peringatan Kesehatan yang didasarkan pada metode wawancara memberikan hasil yang berbeda-beda. Penelitian ini menganalisis bagaimana atensi visual para perokok saat melihat bungkus rokok dan dibandingkan dengan para non perokok dengan menggunakan teknologi human eye tracker. Remaja berusia 18 -20 tahun yang berjumlah 50 orang yang terdiri dari kelompok perokok (N=25 orang) dan non perokok (N=25 orang) ikut serta sebagai partisipan. Gambar bungkus rokok yang memuat Gambar Peringatan Kesehatan diperlihatkan melalui layar monitor diperlihatkan kepada partisipan secara bergantian dengan gambar netral. Penelitian menunjukkan bahwa perokok dan non perokok memiliki atensi yang sangat berbeda kala melihat bungkus rokok, di mana non perokok akan berfokus pada penyakit akibat merokok sedangkan perokok akan berfokus pada logo rokok.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.