Fluorides-based perovskites are currently the typical materials being used in spintronic devices, optoelectronic and magneto-resistance colossal fields. Solar cells made of Fluoro-perovskite hold much promise for the future of solar energy. The electronic structure and magnetic properties of KFeF3, KCoF3 and KNiF3 Fluorides are studied using ab initio Calculation. We have analysed the structural phases, total and partial electronic densities and band structures within the (DFT) vs the DFT+U description. We show the Electro-Magnetic Behavior using L(S)DA+U vs L(S)DA in a comparative study of cation effect by integrating three types of crystal structures (Cubic (Pm-3m), Four-Layered Hexagonal (P6/mmc), and Orthorhombic (Pnma)). Equilibrium lattices agree very well with experimental and theoretical data. Magnetic moment of each phase is discussed. The obtained results confirmed that the three crystal structures invested here exhibit Ferromagnetic (FM) behavior. The introduction of the Hubbard’s parameter U increases lattice parameters and magnetic moment. We deduce that the second cation plays an important role in the magnetic effects. L(S)DA+U show correctly that KFeF3, KCoF3 and KNiF3 are insulators.
The structural, electronic and magnetic properties of (Cubic Pm-3m, Hexagonal-4H, orthorhombic Pnma, and orthorhombic Pbnm) phases of AFeF3 Fluorides (A = Cs, Na, and Rb) are reported theoretically using full potential linearized augmented plane waves method within the density functional theory (DFT). Using different exchange–correlation approximations including the generalized gradient approximation (PBE-GGA, WC-GGA, and PBEsol-GGA), also (GGA) with Hubbard potential (GGA + U) and The modified Becke Johnson potential (mBJ), we carried to determine various physical properties. The Calculations revealing that the estimated structural parameters are reliable with the experimentally reported data. Magnetically all these intermetallics are Ferromagnetic (FM). The ground-state energy of different magnetic phases studied showed that the magnetic moments are evaluated per atom, and overestimated by (GGA+U). Transfer charge reveals a strong covalent interaction between Fe-Fe atoms. Their electronic band structure and density of states indicate insulator behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.