Automated design methods for convolutional neural networks (CNNs) have recently been developed in order to increase the design productivity. We propose a neuroevolution method capable of evolving and optimizing CNNs with respect to the classification error and CNN complexity (expressed as the number of tunable CNN parameters), in which the inference phase can partly be executed using fixed point operations to further reduce power consumption. Experimental results are obtained with TinyDNN framework and presented using two common image classification benchmark problems -MNIST and CIFAR-10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.