SUMMARYThis paper presents a fibre beam-column element for the non-linear static and dynamic analysis of reinforced concrete frames. It is assumed that plane sections remain plane and normal to the longitudinal axis. The effects of shear and bond-slip are, thus, presently neglected. The non-linear hysteretic behaviour of the element derives from the constitutive relations of concrete and reinforcing steel fibres into which each section is divided. The element formulation is flexibility-based and relies on force interpolation functions that strictly satisfy the equilibrium of bending moments and axial force along the element. Since the element does not make use of displacement interpolation functions, an iterative algorithm is needed for the determination of the resisting forces during the element state determination. The proposed algorithm is accurate and stable, even in the presence of strength loss, and is, thus, capable of tracing very well the highly non-linear behaviour of R/C members under cyclic load combinations of bending moment and axial force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.