Superlattices of epitaxially connected nanocrystals (NCs) are model systems to study electronic and optical properties of NC arrays. Using elemental analysis and structural analysis by in situ X-ray fluorescence and grazing-incidence small-angle scattering, respectively, we show that epitaxial superlattices of PbSe NCs keep their structural integrity up to temperatures of 300 °C; an ideal starting point to assess the effect of gentle thermal annealing on the superlattice properties. We find that annealing such superlattices between 75 and 150 °C induces a marked red shift of the NC bandedge transition. In fact, the post-annealing band-edge reflects theoretical predictions on the impact of charge carrier delocalization in these epitaxial superlattices. In addition, we observe a pronounced enhancement of the charge carrier mobility and a reduction of the hopping activation energy after mild annealing. While the superstructure remains intact at these temperatures, structural defect studies through X-ray diffraction indicate that annealing markedly decreases the density of point defects and edge dislocations. This indicates that the connections between NCs in as-synthesized superlattices still form a major source of grain boundaries and defects, which prevent carrier delocalization over multiple NCs and hamper NC-to-NC transport. Overcoming the limitations imposed by interfacial defects is therefore an essential next step in the development of high-quality optoelectronic devices based on NC solids.
The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t c =5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 • C, thinner films form epitaxial NiSi 2 films which exhibit a high resistance towards agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by using of 'thickness gradients', which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10 % Al, Co, Ge, Pd or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore change the critical thickness t c. The results are discussed in the framework of
Solid-state amorphization, the growth of an amorphous phase during annealing, has been studied in a wide variety of thin film structures. Whereas research on the remarkable growth of such a metastable phase has mostly focused on strictly binary systems, far less is known about the influence of impurities on such reactions. In this paper, the influence of nitrogen, introduced via ion implantation, is studied on the solid-state amorphization reaction of thin (35 nm) Ni films with Si, using in situ XRD, ex situ RBS, XTEM, and synchrotron XRD. It is shown that due to small amounts of nitrogen (< 2 at.%), an amorphous Ni-Si phase grows almost an order of magnitude thicker during annealing than for unimplanted samples. Nitrogen hinders the nucleation of the first crystalline phases, leading to a new reaction path: the formation of the metal-rich crystalline silicides is suppressed in favour of an amorphous Ni-Si alloy; during a brief temperature window between 330 and 350 • C, the entire film is converted to an amorphous phase. The first crystalline structure to grow is the orthorhombic NiSi phase. We demonstrate that this phenomenon occurs only under specific implantation conditions. In particular, the initial distribution of nitrogen upon implantation is crucial: sufficient nitrogen impurities must be present at the interface throughout the reaction. Introducing implantation damage without nitrogen impurities (e.g. by implanting a noble gas) does not cause the enhanced solid-state reaction. Moreover, we show that the stabilizing effect of nitrogen on amorphous Ni-Si films (with a composition ranging from 40% to 50% Si) is not restricted to thin film reactions, but is a general feature of the Ni-Si system.
The controlled formation of silicide materials is an ongoing challenge to facilitate the electrical contact of Si-based transistors. Due to the ongoing miniaturisation of the transistor, the silicide is trending to ever-thinner thickness's. The corresponding increase in surface-to-volume ratio emphasises the importance of low-energetic interfaces. Intriguingly, the thickness reduction of nickel silicides results in an abrupt change in phase sequence. This paper investigates the sequence of the silicides phases, and their preferential orientation with respect to the Si(001) substrate, for both 'thin' (i.e. 9 nm) and 'ultra-thin' (i.e. 3 nm) Ni films. Furthermore, as the addition of ternary elements is often considered in order to tailor the silicides' properties, additives of Al, Co and Pt are also included in this study. Our results show that the first silicide formed is epitaxial θ-Ni 2 Si , regardless of initial thickness or alloyed composition. The transformations towards subsequent silicides are changed through the additive elements, which can be understood through solubility arguments and classical nucleation theory. The crystalline alignment of the formed silicides with the substrate significantly differs through alloying. The observed textures of sequential silicides
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.