The detection and identification of road anomalies and obstacles in the road infrastructure has been investigated by the research community using different types of sensors. This paper evaluates the detection and identification of road anomalies/obstacles using the data collected from the Inertial Measurement Unit (IMU) installed in a vehicle and in particular from the data generated by the accelerometers’ and gyroscopes’ components. Inspired by the successes of the application of deep learning to various identification problems, this paper investigates the application of Convolutional Neural Network (CNN) to this specific problem. In particular, we propose a novel approach in this context where the time-frequency representation (i.e., spectrogram) is used as an input to the CNN rather than the original time domain data. This approach is evaluated on an experimental dataset collected using 12 different vehicles driving for more than 40 km of road. The results show that the proposed approach outperforms significantly and across different sampling rates both the application of CNN to the original time domain representation and the application of shallow machine learning algorithms. The approach achieves an identification accuracy of 97.2%. The results presented in this paper are based on an extensive optimization both of the CNN algorithm and the spectrogram implementation in terms of window size, type of window, and overlapping ratio. The accurate detection of road anomalies/obstacles could be useful to road infrastructure managers to monitor the quality of the road surface and to improve the accurate positioning of autonomous vehicles because road anomalies/obstacles could be used as landmarks.
The concept of Continuous Authentication is to authenticate an entity on the basis of a digital output generated in a continuous way by the entity itself. This concept has recently been applied in the literature for the continuous authentication of persons on the basis of intrinsic features extracted from the analysis of the digital output generated by wearable sensors worn by the subjects during their daily routine. This paper investigates the application of this concept to the continuous authentication of automotive vehicles, which is a novel concept in the literature and which could be used where conventional solutions based on cryptographic means could not be used. In this case, the Continuous Authentication concept is implemented using the digital output from Inertial Measurement Units (IMUs) mounted on the vehicle, while it is driving on a specific road path. Different analytical approaches based on the extraction of statistical features from the time domain representation or the use of frequency domain coefficients are compared and the results are presented for various conditions and road segments. The results show that it is possible to authenticate vehicles from the Inertial Measurement Unit (IMU) recordings with great accuracy for different road segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.