Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compatibility with privacy and system requirements, and other constraints that are not primary considerations in other problem settings. This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms through concrete examples and practical implementation, with a focus on conducting effective simulations to infer real-world performance. The goal of this work is not to survey the current literature, but to inspire researchers and practitioners to design federated learning algorithms that can be used in various practical applications.
We consider the problem of minimizing the sum of two convex functions: one is differentiable and relatively smooth with respect to a reference convex function, and the other can be nondifferentiable but simple to optimize. The relatively smooth condition is much weaker than the standard assumption of uniform Lipschitz continuity of the gradients, thus significantly increases the scope of potential applications. We present accelerated Bregman proximal gradient (ABPG) methods that employ the Bregman distance of the reference function as the proximity measure. These methods attain an O(k −γ ) convergence rate in the relatively smooth setting, where γ ∈ [1, 2] is determined by a triangle scaling property of the Bregman distance. We develop adaptive variants of the ABPG method that automatically ensure the best possible rate of convergence and argue that the O(k −2 ) rate is attainable in most cases. We present numerical experiments with three applications: D-optimal experiment design, Poisson linear inverse problem, and relative-entropy nonnegative regression. In all experiments, we obtain numerical certificates showing that these methods do converge with the O(k −2 ) rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.