Metabolic cross-feeding interactions are ubiquitous in natural microbial communities. However, it remains generally unclear whether the production and exchange of metabolites incurs fitness costs to the producing cells and if so, which ecological mechanisms can facilitate a cooperative exchange of metabolites among unrelated individuals. We hypothesized that positive assortment within structured environments can maintain mutualistic cross-feeding. To test this, we engineered Acinetobacter baylyi and Escherichia coli to reciprocally exchange essential amino acids. Interspecific coculture experiments confirmed that non-cooperating types were selectively favoured in spatially unstructured (liquid culture), yet disfavoured in spatially structured environments (agar plates). Both an individual-based model and experiments with engineered genotypes indicated that a segregation of cross-feeders and non-cooperating auxotrophs stabilized cooperative cross-feeding in spatially structured environments. Chemical imaging confirmed that auxotrophs were spatially excluded from cooperative benefits. Together, these results demonstrate that cooperative crossfeeding between different bacterial species is favoured in structured environments such as bacterial biofilms, suggesting this type of interactions might be common in natural bacterial communities.
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
Traditional tissue-sectioning techniques for histological samples utilize various embedding media to stabilize the tissue on a sectioning target and to provide a smooth cutting surface. Due to the ion suppression effect in MALDI ionization and number of background peaks in the low-mass region, these media are not suitable for mass spectrometry imaging (MSI) experiments. To overcome this, droplets of water are often used to mount the tissue on a sectioning target, but the ice block formed around the tissue does not provide a good support for sectioning of fragile samples. In this work, we propose a novel embedding media, compatible with MALDI ionization and MSI experiments, based on poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA). Using a reversible addition-fragmentation chain transfer polymerization technique, well-defined pHPMA polymer with narrow mass distribution was prepared. Benefits of the resulted pHPMA-based embedding media were tested on different tissue samples.
Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.