Machine learning is commonly used to improve ranked retrieval systems. Due to computational difficulties, few learning techniques have been developed to directly optimize for mean average precision (MAP), despite its widespread use in evaluating such systems. Existing approaches optimizing MAP either do not find a globally optimal solution, or are computationally expensive. In contrast, we present a general SVM learning algorithm that efficiently finds a globally optimal solution to a straightforward relaxation of MAP. We evaluate our approach using the TREC 9 and TREC 10 Web Track corpora (WT10g), comparing against SVMs optimized for accuracy and ROCArea. In most cases we show our method to produce statistically significant improvements in MAP scores.
This paper examines the reliability of implicit feedback generated from clickthrough data and query reformulations in WWW search. Analyzing the users' decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average. We find that such relative preferences are accurate not only between results from an individual query, but across multiple sets of results within chains of query reformulations.
Algorithms for learning to rank Web documents usually assume a document's relevance is independent of other documents. This leads to learned ranking functions that produce rankings with redundant results. In contrast, user studies have shown that diversity at high ranks is often preferred. We present two online learning algorithms that directly learn a diverse ranking of documents based on users' clicking behavior. We show that these algorithms minimize abandonment, or alternatively, maximize the probability that a relevant document is found in the top k positions of a ranking. Moreover, one of our algorithms asymptotically achieves optimal worst-case performance even if users' interests change.
Automatically judging the quality of retrieval functions based on observable user behavior holds promise for making retrieval evaluation faster, cheaper, and more user centered. However, the relationship between observable user behavior and retrieval quality is not yet fully understood. We present a sequence of studies investigating this relationship for an operational search engine on the arXiv.org e-print archive. We find that none of the eight absolute usage metrics we explore (e.g., number of clicks, frequency of query reformulations, abandonment) reliably reflect retrieval quality for the sample sizes we consider. However, we find that paired experiment designs adapted from sensory analysis produce accurate and reliable statements about the relative quality of two retrieval functions. In particular, we investigate two paired comparison tests that analyze clickthrough data from an interleaved presentation of ranking pairs, and we find that both give accurate and consistent results. We conclude that both paired comparison tests give substantially more accurate and sensitive evaluation results than absolute usage metrics in our domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.