Large-scale fabrication of graphene is highly important for industrial and academic applications of this material. The most common large-scale preparation method is the oxidation of graphite to graphite oxide using concentrated acids in the presence of strong oxidants and consequent thermal exfoliation and reduction by thermal shock to produce reduced graphene. These oxidation methods typically use concentrated sulfuric acid (a) in combination with fuming nitric acid and KClO(3) (Staudenmaier method), (b) in combination with concentrated nitric acid and KClO(3) (Hofmann method) or (c) in the absence of nitric acid but in the presence of NaNO(3) and KMnO(4) (Hummers method). The evaluation of quality and applicability of the graphenes produced by these various methods is of high importance and is attempted side-by-side for the first time in this paper. Full-scale characterization of thermally reduced graphenes prepared by these standard methods was performed with techniques such as transmission and scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their applicability for electrochemical devices was further evaluated by means of cyclic voltammetry techniques. We showed that while Staudenmaier and Hofmann methods (methods that do not use potassium permanganate as oxidant) generated thermally reduced graphenes with comparable electrochemical properties, the graphene prepared by the Hummers method which uses permanganate as oxidant showed higher heterogeneous electron transfer rates and lower overpotentials as compared to graphenes prepared by the Staudenmaier or Hofmann methods. This clearly shows that the methods of preparations have dramatic influences on the materials properties and, thus, such findings are of eminent importance for practical applications as well as for academic research.
Fully hydrogenated graphene (graphane) and partially hydrogenated graphene materials are expected to possess various fundamentally different properties from graphene. We have prepared highly hydrogenated graphene containing 5% wt of hydrogen via Birch reduction of graphite oxide using elemental sodium in liquid NH3 as electron donor and methanol as proton donor in the reduction. We also investigate the influence of preparation method of graphite oxide, such as the Staudenmaier, Hofmann or Hummers methods on the hydrogenation rate. A control experiment involving NaNH2 instead of elemental Na was also performed. The materials were characterized in detail by electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy both at room and low temperatures, X-ray fluorescence spectroscopy, inductively coupled plasma optical emission spectroscopy, combustible elemental analysis and electrical resistivity measurements. Magnetic measurements are provided of bulk quantities of highly hydrogenated graphene. In the whole temperature range up to room temperature, the hydrogenated graphene exhibits a weak ferromagnetism in addition to a contribution proportional to field that is caused not only by diamagnetism but also likely by an antiferromagnetic influence. The origin of the magnetism is also determined to arise from the hydrogenated graphene itself, and not as a result of any metallic impurities.
Metal decorated graphene materials are highly important for catalysis. In this work, noble metal doped-graphene hybrids were prepared by a simple and scalable method. The thermal reductions of metal doped-graphite oxide precursors were carried out in nitrogen and hydrogen atmospheres and the effects of these atmospheres as well as the metal components on the characteristics and catalytic capabilities of the hybrid materials were studied. The hybrids exfoliated in nitrogen atmosphere contained a higher amount of oxygen-containing groups and lower density of defects on their surfaces than hybrids exfoliated in hydrogen atmosphere. The metals significantly affected the electrochemical behavior and catalysis of compounds that are important in energy production and storage and in electrochemical sensing. Research in the field of energy storage and production, electrochemical sensing and biosensing as well as biomedical devices can take advantage of the properties and catalytic capabilities of the metal doped graphene hybrids.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate-based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen-containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy-storage and sensing devices.
The conversion of graphene to graphane is of high importance from a technological and scientific point of view. We present here a scalable method for the hydrogenation of graphene based on thermal exfoliation of graphite oxide in a hydrogen atmosphere under high pressure (60-150 bar) and temperature (200-500 °C). This method does not require a plasma source and is able to produce gram quantities of the material. The properties of the resultant hydrogenated graphene were studied by scanning and transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy and combustible elemental analysis techniques. Sheet and specific resistance of the graphene and hydrogenated graphene were measured. This scalable synthesis method has great potential to serve as a pathway towards the mass production of graphane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.