This article presents a Croatian Adriatic terraced landscape classification, highlighting its natural and cultural background and proposing a classification framework for further research. The classification is based on the landscape level (i.e., the »landscape pattern level«), synthesizing its structural, biophysical, and cultural-historical dimensions. The interpretation of classes involves a combination of general land use, structure, geomorphology, local land use, crops, soil type, and historical aspects. Nine classes of terraced landscapes are identified and described, example locations are given, and they are substantiated with illustrations and photos.
Algorithmic differentiation (AD) allows exact computation of derivatives given only an implementation of an objective function. Although many AD tools are available, a proper and efficient implementation of AD methods is not straightforward. The existing tools are often too different to allow for a general test suite. In this paper, we compare fifteen ways of computing derivatives including eleven automatic differentiation tools implementing various methods and written in various languages (C++, F#, MATLAB, Julia and Python), two symbolic differentiation tools, finite differences, and hand-derived computation.We look at three objective functions from computer vision and machine learning. These objectives are for the most part simple, in the sense that no iterative loops are involved, and conditional statements are encapsulated in functions such as abs or logsumexp. However, it is important for the success of algorithmic differentiation that such 'simple' objective functions are handled efficiently, as so many problems in computer vision and machine learning are of this form.Of course, our results depend on programmer skill, and familiarity with the tools. However, we contend that this paper presents an important datapoint: a skilled programmer devoting roughly a week to each tool produced the timings we present. We have made our implementations available as open source to allow the community to replicate and update these benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.