We introduce a new method for internal replay that modulates the frequency of rehearsal based on the depth of the network. While replay strategies mitigate the effects of catastrophic forgetting in neural networks, recent works on generative replay show that performing the rehearsal only on the deeper layers of the network improves the performance in continual learning. However, the generative approach introduces additional computational overhead, limiting its applications. Motivated by the observation that earlier layers of neural networks forget less abruptly, we propose to update network layers with varying frequency using intermediate-level features during replay. This reduces the computational burden by omitting computations for both deeper layers of the generator and earlier layers of the main model. We name our method Progressive Latent Replay and show that it outperforms Internal Replay while using significantly fewer resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.