The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.
Modern urban mobility needs new solutions to resolve high-complexity demands on urban traffic-control systems, including reducing congestion, fuel and energy consumption, and exhaust gas emissions. One example is urban motorways as key segments of the urban traffic network that do not achieve a satisfactory level of service to serve the increasing traffic demand. Another complex need arises by introducing the connected and autonomous vehicles (CAVs) and accompanying additional challenges that modern control systems must cope with. This study addresses the problem of decreasing the negative environmental aspects of traffic, which includes reducing congestion, fuel and energy consumption, and exhaust gas emissions. We applied a variable speed limit (VSL) based on Q-Learning that utilizes electric CAVs as speed-limit actuators in the control loop. The Q-Learning algorithm was combined with the two-step temporal difference target to increase the algorithm’s effectiveness for learning the VSL control policy for mixed traffic flows. We analyzed two different optimization criteria: total time spent on all vehicles in the traffic network and total energy consumption. Various mixed traffic flow scenarios were addressed with varying CAV penetration rates, and the obtained results were compared with a baseline no-control scenario and a rule-based VSL. The data about vehicle-emission class and the share of gasoline and diesel human-driven vehicles were taken from the actual data from the Croatian Bureau of Statistics. The obtained results show that Q-Learning-based VSL can learn the control policy and improve the macroscopic traffic parameters and total energy consumption and can reduce exhaust gas emissions for different electric CAV penetration rates. The results are most apparent in cases with low CAV penetration rates. Additionally, the results indicate that for the analyzed traffic demand, the increase in the CAV penetration rate alleviates the need to impose VSL control on an urban motorway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.