Substrate ramps and stepped stress transient measurements are applied to study vertical charge transport mechanisms in GaN-on-Si power HEMTs. By choosing appropriate bias points for substrate stress it is possible to single out the dominant charge transport mechanism: at low negative biases transport through carbon-doped GaN manifests itself in negative transients with apparent activation energy (EA) = 0.29 eV, while at larger negative voltages transport through unintentionally doped GaN is characterized by positive transients (EA = 0.38 eV). We present experimental evidence for 3D variable range hopping taking place in C-doped GaN and 1D hopping along the dislocations in unintentionally doped GaN. By investigating transients obtained from bidirectional voltage steps of 10 V potential difference in the range 0 to -140 V, we observe that hopping transport through dislocations shows non-Ohmic behavior at low substrate biases, which manifests itself in a time constant τ strongly dependent on bias. We propose that this can be explained by the existence of a diode junction between the dislocation core and the 2D electron gas (2DEG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.