Cutaneous necrotising vasculitis induced by levamisoleThe anthelmintic agent levamisole has immunostimulant properties in patients with defective cell-mediated immune responses. We are assessing the drug in patients with breast cancer to see whether it can maintain surgically induced remission. One such patient developed a severe cutaneous necrotising vasculitis, which disappeared once the drug was withdrawn. Case reportA 59-year-old woman had been receiving thrice-weekly levamisole 150 mg/day for three months, when in May 1975 she developed fever and a severe rash. Cutaneous necrotising vasculitis was diagnosed. Biopsy of one of the lesions showed intense neutrophil and eosinophil infiltration of the vessel wall with obliteration of the lumen. There were no other physical abnormalities, and no sign of the original disease was noted. She had not been taking any other drugs.Haemoglobin was 13 g/dl and white cell count 3 0 x 109/1 (3000/mm3; 30 % segmented neutrophils, 8 0o eosinophils, 10 Po monocytes, 52°lymphocytes). Results of complement studies were within normal limits, and other immunological and biochemical values were normal. A bone-marrow aspirate showed a normal distribution of white and red cells but a moderate increase in eosinophils. A chest radiograph was normal.Levamisole was discontinued and the patient given a short course of prednisone 40 mg daily. After two weeks the clinical picture returned to normal, and three months later the skin lesions showed no signs of recurrence and the white cell count was normal. CommentLevamisole-induced vasculitis has not been reported, despite wide use of the drug in various conditions, including malignant and rheumatic diseases.1-3 The pathogenesis of our patient's skin reaction is unknown, though histologically it was similar to an Arthus-type reaction, in which immune-complex formation or complement activation is usually implicated. We found no complement abnormalities in our patient, but the tests did not exclude a local type III reaction.The peripheral blood neutropenia in our patient also implicates levamisole as the causal agent, since neutropenia and agranulocytosis are associated with levamisole treatment.3 The exact mechanism of this reaction is unknown, but the peripheral and central eosinophilia suggest a hypersensitivity reaction. Although we did not challenge the patient (for ethical reasons) we think that levamisole was the likely cause of the vasculitis.
This study aimed to assess the effect of acute exposure to moderate altitude on kinematic variables of the ippon-seoi-nage and on the mechanical outputs of the countermovement jump (CMJ). Thirteen elite male judokas from the Spanish Judo Training Centre in Valencia (age: 21.54 ± 2.15 years) participated in the study. All of them performed an incremental CMJ test and an ippon-seoi-nage technique test before (N) and after the ascent to a moderate altitude of 2320 m above the sea level (H). A linear velocity transducer was attached to the bar to assess the mechanical outputs of each loaded CMJ at different percentages of their own body weight (25, 50, 75 and 100%). A wearable sensor was used to assess the kinematic variables (times, accelerations and angular velocities) transferred to a dummy during the technique test. The kinematic variables showed great individual reliability (CV = 8.46% in N; CV = 8.37% in H), which contrasted with low reliability observed when the whole group was considered. The smallest important CV ratio (>1.15) showed that H caused changes in the reliability of the kinematic variables, with some variables becoming more reliable and others losing the reliability they had in N. H also caused small increments in peak velocity across all loads tested in the CMJ (+3.67%; P<0.05). In contrast, no changes in the kinematic variables were verified. In addition, there was no association between leg extension capability and the acceleration (r = -0.16 ± 0.19 in N; r = -0.24 ± 0.19 in H) or angular velocity (r = -0.19 ± 0.24 in N; r = -0.30 ± 0.26 in H) of the ippon-seoi-nage, nor was acute exposure to H found to affect this association (P>0.05). Differences between individual and within-groups CV confirm the individual adaptations that each judoka makes during this technique. Additionally, the CV ratio shows a change in the space-time pattern of the technique in H. Therefore, it would be necessary to include an adaptation period to adapt the technique after the ascent in altitude. Further studies are needed to confirm the relationship and transference from the velocity gains in CMJ during altitude training.
This study investigated the effect of a 3-week power-oriented resistance training program performed at moderate altitude on leg power output variables in a countermovement jump, a related judo technique (ippon-seoi-nage) and the relationship between them. Twenty-four elite male judokas were randomly assigned to a hypobaric hypoxia or normoxia group. Mechanical outputs from an incremental loaded countermovement jump test and the kinematic variables transferred to a dummy during an ippon-seoi-nage test (time to execution and movement accelerations) were assessed before, after, 1 and 2 weeks after training. Results indicated an increase in explosive leg capacity both at moderate altitude (2320 m.a.s.l.) and sea level. The hypoxia group showed additional benefits when compared to normoxia group for peak velocities with different percentages of the body weight, maximal theoretical velocity and jump height after the training period, and these additional benefits in jump height were maintained 2 weeks after training. The hypoxia group achieved a higher peak performance in peak velocity and jump height than normoxia group (peak velocity: 8.8 vs. 5.6%, jump height: 8.2 vs. 1.4%, respectively) and was achieved earlier in hypoxia (after training) than in normoxia (1 week after training). However, there was a detrimental effect for the hypoxia group on the times of execution and acceleration of the ippon-seoi-nage compared to the normoxia group. These results suggest that altitude training may induce faster and greater improvements in explosive leg extension capacity. Specific technique-oriented training should be included at altitude to prevent technique impairment.
This study aimed to compare force, velocity, and power output collected under different loads, as well as the force-velocity (F-V) relationship between three measurement methods. Thirteen male judokas were tested under four loading conditions (20, 40, 60, and 80 kg) in the countermovement jump (CMJ) exercise, while mechanical output data were collected by three measurement methods: the Samozino's method (SAM), a force platform (FP), and a linear velocity transducer (LVT). The variables of the linear F-V relationship (maximum force [F0], maximum velocity [V0], F-V slope, and maximum power [P0]) were determined. The results revealed that (1) the LVT overestimated the mechanical output as compared to the SAM and FP methods, especially under light loading conditions, (2) the SAM provided the lowest magnitude for all mechanical output, (3) the F-V relationships were highly linear either for the SAM (r = 0.99), FP (r = 0.97), and LVT (r = 0.96) methods, (4) the F-V slope obtained by the LVT differed with respect to the other methods due to a larger V0 (5.28 ± 1.48 m·s-1) compared to the SAM (2.98 ± 0.64 m·s-1) and FP (3.06 ± 0.42 m·s-1), and (5) the methods were significantly correlated for F0 and P0, but not for V0 or F-V slope. These results only support the accuracy of the SAM and FP to determine the F-V relationship during the CMJ exercise. The very large correlations of the SAM and LVT methods with respect to the FP (presumed gold-standard) for the mean values of force, velocity and power support their concurrent validity for the assessment of mechanical output under individual loads.
This study examined the acute effects of exposure to moderate altitude on factors associated with muscular adaptations following whole-body hypertrophy-oriented resistance training (R T ) sessions. Thirteen resistance-trained males completed both counterbalanced standard hypertrophic R T sessions (3 sets × 10RM, 2 min rest) at moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Participants rested 72 h between training sessions. Before and after the exercise session, blood samples were obtained for determination of metabolites and ions (lactate, inorganic phosphate, liquid carbon dioxide and calcium) and hormones (testosterone and growth hormone). Sessionrelated performance and perception of effort (s-RPE) were also monitored. Results showed no meaningful differences in performance or s-RPE (8.5 ± 1.4 vs 8.6 ± 0.8 respectively for N and H; p = 0.603). All blood variables displayed statistically significant changes throughout the recovery period compared to basal levels (p < 0.05), except for the testosterone. However, no altitude effect was observed in maximal blood lactate, calcium or anabolic hormones (p > 0.05). The reduction observed in the liquid carbon dioxide concentration in H (21.11 ± 1.46 vs 16.19 ± 1.61 mmol•l −1 ) seems compatible with an increase in buffering capacity. Compared to N, inorganic phosphate displayed lower recovery values after the R T in H (2.89 ± 0.64 vs 2.23 ± 0.60 mg dl −1 ; p = 0.007). The results of this study do not support an accentuated effect of acute moderate terrestrial hypoxia on metabolic and hormonal factors linked to muscle growth during hypertrophic resistance training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.