Chronic pain is associated with the development of affective disorders but the underlying mechanisms are not fully understood. Changes in brain centres implicated in both emotional and pain processing are likely to be critical in the interplay of pain control and affective emotional behaviour. In the present study, we assessed emotional behaviour and performed a structural analysis of the amygdala (AMY) in neuropathic rats after two months of hyperalgesia and allodynia, induced by the spared nerve injury model (SNI). When compared with Sham-controls, SNI animals displayed signs of depressive-like behaviour. In addition, we found an increased amygdalar volume in SNI rats. No alterations were found in the dendritic arborizations of AMY neurons but, surprisingly, the amygdalar hypertrophy was associated with an increased cell proliferation [bromodeoxyuridine (BrdU)-positive cells] in the central (CeA) and basolateral (BLA) amygdaloid nuclei. The phenotypic analysis of the newly-acquired cells revealed that they co-label for neuronal markers (BrdU+NeuN and BrdU+Calbindin), but not for differentiated glial cells (BrdU+glial fibrillary acidic protein). We demonstrate that neuropathic pain promotes generation of new neurons in the AMY. Given the established role of the AMY in emotional behaviour, we propose that these neuroplastic changes might contribute for the development of depressive-like symptoms that are usually present in prolonged pain syndromes in humans.
The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard.
Objectives Osteoarthritis (OA) is a chronic degenerative musculoskeletal disease that causes articular damage and chronic pain, with a prevalence of up to 50% in individuals >60 years of age. Patients suffering from chronic painful conditions, including OA, also frequently report anxiety or depression. A systematic review and meta-analysis were performed to assess the correlation between pain severity and depressive and anxious symptomatology in OA patients. Methods A systematic search was conducted using four databases (PubMed, Medline, Scopus, and Web of Science) from inception up to 14th January of 2020. We included original articles evaluating pain severity and anxiety and/or depression severity in OA-diagnosed patients. Detailed data were extracted from each study, including patients’ characteristics and pain, anxiety, and depression severity. When available, the Pearson correlation coefficient between pain and depression severity and pain and anxiety severity was collected and a meta-analysis of random effects was applied. Results This systematic review included 121 studies, with a total of 38085 participants. The mean age was 64.3 years old and subjects were predominantly female (63%). The most used scale to evaluate pain severity was the Western Ontario and the McMaster Universities Osteoarthritis Index, while for anxiety and depression, the Hospital Anxiety and Depression Scale was the most used. The meta-analysis showed a moderate positive correlation between pain severity and both anxious (r = 0.31, p < 0.001) and depressive symptomatology (r = 0.36, p < 0.001). Conclusions Our results demonstrate a significant correlation between pain and depression/anxiety severity in OA patients, highlighting the need for its routine evaluation by clinicians.
The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.